已知数列{an}的前n项和为Sn,且 a1+2a2+3a3+…+nan=(n-1)Sn+2n(n∈N*).(1)求数列{an}的通项公式;

已知数列{an}的前n项和为Sn,且a1+2a2+3a3+…+nan=(n-1)Sn+2n(n∈N*).(1)求数列{an}的通项公式;(2)若p,q,r是三个互不相等的... 已知数列{an}的前n项和为Sn,且 a1+2a2+3a3+…+nan=(n-1)Sn+2n(n∈N*).(1)求数列{an}的通项公式;(2)若p,q,r是三个互不相等的正整数,且p,q,r成等差数列,试判断ap-1,aq-1,ar-1是否成等比数列?并说明理由. 展开
 我来答
雷锋hw46
推荐于2017-09-28 · 超过61用户采纳过TA的回答
知道答主
回答量:113
采纳率:0%
帮助的人:150万
展开全部
(1)∵a1+2a2+3a3+…+nan=(n-1)Sn+2n,
∴当n=1时,有 a1=(1-1)S1+2,解得 a1=2.…(1分)
由a1+2a2+3a3+…+nan=(n-1)Sn+2n,①
得a1+2a2+3a3+…+nan+(n+1)an+1=nSn+1+2(n+1),②…(2分)
②-①得:(n+1)an+1=nSn+1-(n-1)Sn+2.③…(3分)
以下提供两种方法:
法1:由③式得:(n+1)(Sn+1-Sn)=nSn+1-(n-1)Sn+2,
即Sn+1=2Sn+2;                                                …(4分)
∴Sn+1+2=2(Sn+2),…(5分)
∵S1+2=a1+2=4≠0,
∴数列{Sn+2}是以4为首项,2为公比的等比数列.
∴Sn+2=4×2n-1,即Sn=4×2n-1-2=2n+1-2.…(6分)
当n≥2时,an=Sn-Sn-1=(2n+1-2)-(2n-2)=2n,…(7分)
又a1=2也满足上式,
∴an=2n.…(8分)
法2:由③式得:(n+1)an+1=nSn+1-(n-1)Sn+2=n(Sn+1-Sn)+Sn+2,
得an+1=Sn+2.④…(4分)
当n≥2时,an=Sn-1+2,⑤…(5分)
⑤-④得:an+1=2an.…(6分)
由a1+2a2=S2+4,得a2=4,
∴a2=2a1.…(7分)
∴数列{an}是以a1=2为首项,2为公比的等比数列.
∴an=2n…(8分)
(2)解:∵p,q,r成等差数列,
∴p+r=2q.…(9分)
假设ap-1,aq-1,ar-1成等比数列,
则(ap-1)(ar-1)=(aq?1)2,…(10分)
即(2p-1)(2r-1)=(2q-1)2
化简得:2p+2r=2×2q.(*)        …(11分)
∵p≠r,
∴2p+2r>2
2p×2r
=2×2q,这与(*)式矛盾,故假设不成立.…(13分)
∴ap-1,aq-1,ar-1不是等比数列.…(14分)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式