设定义域为(0,+∞)的单调函数f(x),对任意的x∈(0,+∞),都有f[f(x)-log2x]=6,若x0是方程f(x

设定义域为(0,+∞)的单调函数f(x),对任意的x∈(0,+∞),都有f[f(x)-log2x]=6,若x0是方程f(x)-f′(x)=4的一个解,且x0∈(a,a+1... 设定义域为(0,+∞)的单调函数f(x),对任意的x∈(0,+∞),都有f[f(x)-log2x]=6,若x0是方程f(x)-f′(x)=4的一个解,且x0∈(a,a+1)(a∈N*),则实数a=______. 展开
 我来答
不用打的3082
推荐于2016-12-01 · 超过74用户采纳过TA的回答
知道答主
回答量:122
采纳率:0%
帮助的人:71.9万
展开全部
根据题意,对任意的x∈(0,+∞),都有f[f(x)-log2x]=6,
又由f(x)是定义在(0,+∞)上的单调函数,
则f(x)-log2x为定值,
设t=f(x)-log2x,则f(x)=t+log2x,
又由f(t)=6,可得t+log2t=6,
可解得t=4,故f(x)=4+log2x,f′(x)=
1
xln2

又x0是方程f(x)-f′(x)=4的一个解,
所以x0是函数F(x)=f(x)-f′(x)-4=log2x-
1
xln2
的零点,
分析易得F(1)=-
1
ln2
<0,F(2)=1-
1
2ln2
=1-
1
ln4
>0,
故函数F(x)的零点介于(1,2)之间,故a=1,
故答案为:1
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式