设数列{an}的前n项和为Sn,已知Sn=2an-2n+1 (n∈N*).(Ⅰ)求数列{an}的通项公式;(Ⅱ)设bn=logann+
设数列{an}的前n项和为Sn,已知Sn=2an-2n+1(n∈N*).(Ⅰ)求数列{an}的通项公式;(Ⅱ)设bn=logann+12,数列{bn}的前n项和为Bn,若...
设数列{an}的前n项和为Sn,已知Sn=2an-2n+1 (n∈N*).(Ⅰ)求数列{an}的通项公式;(Ⅱ)设bn=logann+12,数列{bn}的前n项和为Bn,若存在整数m,使对任意n∈N*且n≥2,都有B3n-Bn>m20成立,求m的最大值;(Ⅲ)令cn=(-1)n+1logann+12,数列{cn}的前n项和为Tn,求证:当n∈N*且n≥2时,T2n<22.
展开
1个回答
展开全部
(Ⅰ)由Sn=2an-2n+1,得Sn-1=2an-1-2n(n≥2).
两式相减,得an=2an-2an-1-2n,即an-2an-1=2n(n≥2).
于是
-
=1,所以数列{
}是公差为1的等差数列.(2分)
又S1=a1=2a1-22,,所以a1=4.
所以
=2+(n-1)=n+1,故an=(n+1)?2n.(4分)
(注:该问也可用归纳,猜想,数学归纳法证明的方法)
(Ⅱ)因为bn=log
2=log2n2=
,则B3n-Bn=
+
+
+…+
.
令f(n)=
+
+…+
,
则f(n+1)=
+
+…+
+
+
+
.
所以f(n+1)-f(n)=
+
+
-
=
+
-
>
+
-
=0.
即f(n+1)>f(n),所以数列{f(n)}为递增数列.(7分)
所以当n≥2时,f(n)的最小值为f(2)=
+
+
+
=
.
据题意,
<
,即m<19.又m为整数,
故m的最大值为18.(8分)
(Ⅲ)证明:因为cn=(-1)n+1?
,则当n≥2时,
T2n=1-
+
-
+…+
-
=(1+
+
+
+…+
+
)-2(
+
+…+
)=
+
+…+
.(9分)
下面证
+
+…+
<
.
先证一个不等式,当x>0时,ln(x+1)>
.
令g(x)=ln(x+1)-
(x>0),则g′(x)=
-
=
>0,
∴g(x)在(0,+∞)时单调递增,
则g(x)>g(0)=0,即当x>0时,ln(x+1)>
,
令x=
,则ln
>
?ln(n+1)-lnn>
两式相减,得an=2an-2an-1-2n,即an-2an-1=2n(n≥2).
于是
an |
2n |
an?1 |
2n?1 |
an |
2n |
又S1=a1=2a1-22,,所以a1=4.
所以
an |
2n |
(注:该问也可用归纳,猜想,数学归纳法证明的方法)
(Ⅱ)因为bn=log
an |
n+1 |
1 |
n |
1 |
n+1 |
1 |
n+2 |
1 |
n+3 |
1 |
3n |
令f(n)=
1 |
n+1 |
1 |
n+2 |
1 |
3n |
则f(n+1)=
1 |
n+1 |
1 |
n+2 |
1 |
3n |
1 |
3n+1 |
1 |
3n+2 |
1 |
3n+3 |
所以f(n+1)-f(n)=
1 |
3n+1 |
1 |
3n+2 |
1 |
3n+3 |
1 |
n+1 |
1 |
3n+1 |
1 |
3n+2 |
2 |
3n+3 |
1 |
3n+3 |
1 |
3n+3 |
2 |
3n+3 |
即f(n+1)>f(n),所以数列{f(n)}为递增数列.(7分)
所以当n≥2时,f(n)的最小值为f(2)=
1 |
3 |
1 |
4 |
1 |
5 |
1 |
6 |
19 |
20 |
据题意,
m |
20 |
19 |
20 |
故m的最大值为18.(8分)
(Ⅲ)证明:因为cn=(-1)n+1?
1 |
n |
T2n=1-
1 |
2 |
1 |
3 |
1 |
4 |
1 |
2n?1 |
1 |
2n |
1 |
2 |
1 |
3 |
1 |
4 |
1 |
2n?1 |
1 |
2n |
1 |
2 |
1 |
4 |
1 |
2n |
1 |
n+1 |
1 |
n+2 |
1 |
2n |
下面证
1 |
n+1 |
1 |
n+2 |
1 |
2n |
| ||
2 |
先证一个不等式,当x>0时,ln(x+1)>
x |
x+1 |
令g(x)=ln(x+1)-
x |
x+1 |
1 |
x+1 |
1 |
(x+1)2 |
x |
(x+1)2 |
∴g(x)在(0,+∞)时单调递增,
则g(x)>g(0)=0,即当x>0时,ln(x+1)>
x |
x+1 |
令x=
1 |
n |
n+1 |
n |
1 |
n+1 |