如图,已知20×20的网络中每个小正方形的边长均为1个单位长度

如图,已知20×20的网络中每个小正方形的边长均为1个单位长度,等腰直角三角形ABC的腰长为4个单位长度,△ABC从点A与点M重合的位置开始,以每秒1个单位长度的速度先向... 如图,已知20×20的网络中每个小正方形的边长均为1个单位长度,等腰直角三角形ABC的腰长为4个单位长度,△ABC从点A与点M重合的位置开始,以每秒1个单位长度的速度先向下平移,当BC边与网络的底部重合时,继续以同样的速度向右平移,当点C与点P重合时,△ABC停止运动.设运动时间为x秒,△QAC的面积为.问:x当为何值时,y取得最大值和最小值?最大值和最小值各是多少 展开
吴_小兮
2011-01-09
知道答主
回答量:10
采纳率:0%
帮助的人:7.2万
展开全部
解:(1)如图1,△A2B2C2是△A1B1C1关于直线QN成轴对称的图形;(2分)
(2)当△ABC以每秒1个单位长的速度向下平移x秒时(如图2),
则有:MA=x,MB=x+4,MQ=20,
y=S梯形QMBC-S△AMQ-S△ABC
= (4+20)(x+4)- ×20x- ×4×4
=2x+40(0≤x≤16).(6分)
由一次函数的性质可知:
当x=0时,y取得最小值,且y最小=40,
当x=16时,y取得最大值,且y最大=2×16+40=72;(8分)
(3)解法一:
当△ABC继续以每秒1个单位长的速度向右平移时,
此时16≤x≤32,PB=20-(x-16)=36-x,PC=PB-4=32-x,
∴y=S梯形BAQP-S△CPQ-S△ABC= (4+20)(36-x)- ×20×(32-x)- ×4×4
=-2x+104(16≤x≤32).(10分)
由一次函数的性质可知:
当x=32时,y取得最小值,且y最小=-2×32+104=40;
当x=16时,y取得最大值,且y最大=-2×16+104=72.(12分)
解法二:
在△ABC自左向右平移的过程中,
△QAC在每一时刻的位置都对应着(2)中△QAC某一时刻的位置,
使得这样的两个三角形关于直线QN成轴对称.
因此,根据轴对称的性质,
只需考查△ABC在自上至下平移过程中△QAC面积的变化情况,
便可以知道△ABC在自左向右平移过程中△QAC面积的变化情况.(10分)(另加2分)
当x=16时,y取得最大值,且y最大=72,
当x=32时,y取得最小值,且y最小=40.(12分)(再加2分)
说明:(1)本题解法较多,对于其他正确解法,请参照评分标准按步骤给分;
(2)对于(3),如果学生按照解法一的方法求解,不加分.如果按照解法二利用图形变换的方法说明,可考虑加1~4分.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式