高中数学,求解,第二题,,这儿有答案、我不明白为什么、它的求和方法是这样的求解,谢谢
4个回答
展开全部
搜索词条
网络不给力,可以到 无图模式更省流量
错位相减法
更多图片(15张)
错位相减法是一种常用的数列求和方法,应用于等比数列与等差数列相乘的形式。 形如An=BnCn,其中Bn为等差数列,Cn为等比数列;分别列出Sn,再把所有式子同时乘以等比数列的公比,即kSn;然后错一位,两式相减即可。
分享
简介
如果数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n项和可用此法来求和。
举例
例如:求和Sn=1+3x+5x^2+7x^3+…+(2n-1)*x^(n-1)(x≠0)
当x=1时,Sn=1+3+5+…+(2n-1)=n^2;
当x不等于1时,Sn=1+3x+5x^2+7x^3+…+(2n-1)*x^(n-1);
∴xSn=x+3x^2+5x^3+7x^4+…+(2n-1)*x^n;
两式相减得(1-x)Sn=1+2[x+x^2+x^3+x^4+…+x^(n-1)]-(2n-1)*x^n;
化简得Sn=1/1-x+(2x-2x^n)/(1-x)^2-(2n-1)*x^n/1-x
错位相减法解题
错位相减法是求和的一种解题方法。在题目的类型中:一般是a前面的系数和a的指数是相等的情况下才可以用。
例子1:
S=a+2a^2+3a^3+……+(n-2)a^(n-2)+(n-1)a^(n-1)+na^n (1)
在(1)的左右两边同时乘上a。 得到等式(2)如下:
aS= a^2+2a^3+3a^4+……+(n-2)a^(n-1)+(n-1)a^n+na^(n+1) (2)
用(1)-(2),得到等式(3)如下:
(1-a)S=a+(2-1)a^2+(3-2)a^3+……+(n-n+1)a^n-na^(n+1) (3)
(1-a)S=a+a^2+a^3+……+a^(n-1)+a^n-na^(n+1)
S=a+a^2+a^3+……+a^(n-1)+a^n用这个的求和公式。
(1-a)S=a+a^2+a^3+……+a^(n-1)+a^n-na^(n+1)
最后在等式两边同时除以(1-a),就可以得到S的通用公式了。
例子2:
求和Sn=1+3x+5x^2+7x^3+……..+(2n-1)·x^(n-1)(x不等于0)
解:当x=1时,Sn=1+3+5+…..+(2n-1)=n^2
当x不等于1时,Sn=1+3x+5x^2+7x^3+……..+(2n-1)·x^(n-1)
所以xSn=x+3x^2+5x^3+7x^4……..+(2n-1)·x^n
所以两式相减的(1-x)Sn=1+2x[1+x+x^2+x^3+...+x^(n-2)]-(2n-1)·x^n
化简得:Sn=(2n-1)·x地n+1次方-(2n+1)·x^n+(1+x)/(1-x)^2
Cn=(2n+1)*2^n
Sn=3*2+5*4+7*8+...+(2n+1)*2^n
2Sn=3*4+5*8+7*16+...+(2n-1)*2^n+(2n+1)*2^(n+1)
两式相减得
-Sn=6+2*4+2*8+2*16+...+2*2^n-(2n+1)*2^(n+1)
=6+2*(4+8+16+...+2^n)-(2n+1)*2^(n+1)
=6+2^(n+2)-8-(2n+1)*2^(n+1) (等比数列求和)
=(1-2n)*2^(n+1)-2
所以Sn=(2n-1)*2^(n+1)+2
例子3:
求等比数列求和公式
Sn= 1/2+1/4+1/8+....+1/2^n
两边同时乘以1/
网络不给力,可以到 无图模式更省流量
错位相减法
更多图片(15张)
错位相减法是一种常用的数列求和方法,应用于等比数列与等差数列相乘的形式。 形如An=BnCn,其中Bn为等差数列,Cn为等比数列;分别列出Sn,再把所有式子同时乘以等比数列的公比,即kSn;然后错一位,两式相减即可。
分享
简介
如果数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n项和可用此法来求和。
举例
例如:求和Sn=1+3x+5x^2+7x^3+…+(2n-1)*x^(n-1)(x≠0)
当x=1时,Sn=1+3+5+…+(2n-1)=n^2;
当x不等于1时,Sn=1+3x+5x^2+7x^3+…+(2n-1)*x^(n-1);
∴xSn=x+3x^2+5x^3+7x^4+…+(2n-1)*x^n;
两式相减得(1-x)Sn=1+2[x+x^2+x^3+x^4+…+x^(n-1)]-(2n-1)*x^n;
化简得Sn=1/1-x+(2x-2x^n)/(1-x)^2-(2n-1)*x^n/1-x
错位相减法解题
错位相减法是求和的一种解题方法。在题目的类型中:一般是a前面的系数和a的指数是相等的情况下才可以用。
例子1:
S=a+2a^2+3a^3+……+(n-2)a^(n-2)+(n-1)a^(n-1)+na^n (1)
在(1)的左右两边同时乘上a。 得到等式(2)如下:
aS= a^2+2a^3+3a^4+……+(n-2)a^(n-1)+(n-1)a^n+na^(n+1) (2)
用(1)-(2),得到等式(3)如下:
(1-a)S=a+(2-1)a^2+(3-2)a^3+……+(n-n+1)a^n-na^(n+1) (3)
(1-a)S=a+a^2+a^3+……+a^(n-1)+a^n-na^(n+1)
S=a+a^2+a^3+……+a^(n-1)+a^n用这个的求和公式。
(1-a)S=a+a^2+a^3+……+a^(n-1)+a^n-na^(n+1)
最后在等式两边同时除以(1-a),就可以得到S的通用公式了。
例子2:
求和Sn=1+3x+5x^2+7x^3+……..+(2n-1)·x^(n-1)(x不等于0)
解:当x=1时,Sn=1+3+5+…..+(2n-1)=n^2
当x不等于1时,Sn=1+3x+5x^2+7x^3+……..+(2n-1)·x^(n-1)
所以xSn=x+3x^2+5x^3+7x^4……..+(2n-1)·x^n
所以两式相减的(1-x)Sn=1+2x[1+x+x^2+x^3+...+x^(n-2)]-(2n-1)·x^n
化简得:Sn=(2n-1)·x地n+1次方-(2n+1)·x^n+(1+x)/(1-x)^2
Cn=(2n+1)*2^n
Sn=3*2+5*4+7*8+...+(2n+1)*2^n
2Sn=3*4+5*8+7*16+...+(2n-1)*2^n+(2n+1)*2^(n+1)
两式相减得
-Sn=6+2*4+2*8+2*16+...+2*2^n-(2n+1)*2^(n+1)
=6+2*(4+8+16+...+2^n)-(2n+1)*2^(n+1)
=6+2^(n+2)-8-(2n+1)*2^(n+1) (等比数列求和)
=(1-2n)*2^(n+1)-2
所以Sn=(2n-1)*2^(n+1)+2
例子3:
求等比数列求和公式
Sn= 1/2+1/4+1/8+....+1/2^n
两边同时乘以1/
展开全部
bn数列是等差乘以等比数列,等差乘以等比数列的求和方法是固定的,用2个式子,第一个式子就是那个sn=....拆开,第二个式子是第一个式子左右两面同乘等比数列的公比,就变成3/2Sn=...(注意右边也要承3/2噢)
追答
然后第二个式子右边的第一项与第一个式子第二项对齐,依次往后对齐,用弟二个式子减第一个式子。左边减左边右边减右边,然后你就懂了,这个一个固定的方法忘了叫什么名字了,好像是列项相消法?
不对,是错位相减法,要是还不会我给你写一下你就懂了
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
你哪一步没看懂?它就是先用了第一小题算数来的通项公式,发现是等差比数列,然后就按等比数列的方法求和。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
这样才能去掉一些不想要的部分,是错位相减的一种,练得多了就明白了
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询