高数求解 定积分证明题
3个回答
展开全部
∫(0->2π) f(|cosx|) dx
=∫(0->π/2) f(|cosx|) dx + ∫(π/2->π) f(|cosx|) dx +∫(π->3π/2) f(|cosx|) dx +∫(3π/2->2π) f(|cosx|) dx
consider
∫(π/2->π) f(|cosx|) dx
let
x=π-y
dx = -dy
x=π/2 , y=π/2
x=π, y=0
∫(π/2->π) f(|cosx|) dx
=∫(π/2->0) f(|-cosy|) (-dy)
=∫(0->π/2) f(|cosx|) dx
Similarly
consider
∫(π->3π/2) f(|cosx|) dx
let
x=π+y
dx = dy
x=π , y=0
x= 3π/2 , y=π/2
∫(π->3π/2) f(|cosx|) dx
=∫(0->π/2) f(|-cosy|) dy
=∫(0->π/2) f(|cosx|) dx
consider
∫(3π/2->2π) f(|cosx|) dx
let
y=2π-x
dy = -dx
x=3π/2 , y=π/2
x=2π ,y=0
∫(3π/2->2π) f(|cosx|) dx
=∫(π/2->0) f(|cosy|) (-dy)
=∫(0->π/2) f(|cosx|) dx
∫(0->2π) f(|cosx|) dx
=∫(0->π/2) f(|cosx|) dx + ∫(π/2->π) f(|cosx|) dx +∫(π->3π/2) f(|cosx|) dx +∫(3π/2->2π) f(|cosx|) dx
=∫(0->π/2) f(|cosx|) dx+∫(0->π/2) f(|cosx|) dx+∫(0->π/2) f(|cosx|) dx+∫(0->π/2) f(|cosx|) dx
=4∫(0->π/2) f(|cosx|) dx
=∫(0->π/2) f(|cosx|) dx + ∫(π/2->π) f(|cosx|) dx +∫(π->3π/2) f(|cosx|) dx +∫(3π/2->2π) f(|cosx|) dx
consider
∫(π/2->π) f(|cosx|) dx
let
x=π-y
dx = -dy
x=π/2 , y=π/2
x=π, y=0
∫(π/2->π) f(|cosx|) dx
=∫(π/2->0) f(|-cosy|) (-dy)
=∫(0->π/2) f(|cosx|) dx
Similarly
consider
∫(π->3π/2) f(|cosx|) dx
let
x=π+y
dx = dy
x=π , y=0
x= 3π/2 , y=π/2
∫(π->3π/2) f(|cosx|) dx
=∫(0->π/2) f(|-cosy|) dy
=∫(0->π/2) f(|cosx|) dx
consider
∫(3π/2->2π) f(|cosx|) dx
let
y=2π-x
dy = -dx
x=3π/2 , y=π/2
x=2π ,y=0
∫(3π/2->2π) f(|cosx|) dx
=∫(π/2->0) f(|cosy|) (-dy)
=∫(0->π/2) f(|cosx|) dx
∫(0->2π) f(|cosx|) dx
=∫(0->π/2) f(|cosx|) dx + ∫(π/2->π) f(|cosx|) dx +∫(π->3π/2) f(|cosx|) dx +∫(3π/2->2π) f(|cosx|) dx
=∫(0->π/2) f(|cosx|) dx+∫(0->π/2) f(|cosx|) dx+∫(0->π/2) f(|cosx|) dx+∫(0->π/2) f(|cosx|) dx
=4∫(0->π/2) f(|cosx|) dx
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
我看有没有人回答,十分钟后没有的话我就回答
更多追问追答
追问
你为什么会看到我的提问⊙﹏⊙
追答
为什么不会
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询