直线kx-y+1=0与圆x^2+y^2=4相交于A,B两点,若点M在圆上且有向量OM=向量oa+向量ob(o为坐标原点)求k 15

生生ZDH
2011-01-09 · TA获得超过1404个赞
知道小有建树答主
回答量:562
采纳率:0%
帮助的人:587万
展开全部
直线kx-y+1=0与圆x^2+y^2=4相交于A,B两点
联立两方程得:
(1+k^2)x^2+2kx-3=0
Xa+Xb=-2k/(1+k^2) Xa为A点的横坐标,Xb为B点的横坐标
Ya+Yb=k*Xa+1+k*Xb+1=2/(1+k^2)
所以AB中点C的坐标为(-k/(1+k^2),1/(1+k^2) )
向量OM=向量oa+向量ob=2*向量OC
说明M点的坐标为AB中点的两倍,M(-2k/(1+k^2) ,2/(1+k^2))
M点在圆上,代入方程化简得:
(1+k^2)k^2=0
所以k=0
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式