初三数学,哪位大神讲一下第二第三问怎么做
1个回答
展开全部
(1)证明:∵四边形ABCD是矩形,
∴∠A=∠FDC=90°,
∵CF⊥DE,
∴∠DGF=90°,
∴∠ADE+∠CFD=90°,∠ADE+∠AED=90°,
∴∠CFD=∠AED,
∵∠A=∠CDF,
∴△AED∽△DFC,
∴
DE/CF=AD/CD;
(2)当∠B+∠EGC=180°时,
DE/CF=AD/CD成立.
证明:∵四边形ABCD是平行四边形,
∴∠B=∠ADC,AD∥BC,
∴∠B+∠A=180°,
∵∠B+∠EGC=180°,
∴∠A=∠EGC=∠FGD,
∵∠FDG=∠EDA,
∴△DFG∽△DEA,
∴DE/AD=DF/DG,
∵∠B=∠ADC,∠B+∠EGC=180°,∠EGC+∠DGC=180°,
∴∠CGD=∠CDF,
∵∠GCD=∠DCF,
∴△CGD∽△CDF,
∴DF/DG=CF/CD,
∴DE/AD=CF/CD,
∴DE/CF=AD/CD,
即当∠B+∠EGC=180°时,
DE/CF=AD/CD成立.
(3)
DE/CF=25/24.
理由是:过C作CN⊥AD于N,CM⊥AB交AB延长线于M,连接BD,设CN=x,
∵∠BAD=90°,即AB⊥AD,
∴∠A=∠M=∠CNA=90°,
∴四边形AMCN是矩形,
∴AM=CN,AN=CM,
∵在△BAD和△BCD中
AD=CD
AB=BC
BD=BD
∴△BAD≌△BCD(SSS),
∴∠BCD=∠A=90°,
∴∠ABC+∠ADC=180°,
∵∠ABC+∠CBM=180°,
∴∠MBC=∠ADC,
∵∠CND=∠M=90°,
∴△BCM∽△DCN,
∴CM/CN=BC/CD,
∴CM/x=6/8,
∴CM=3/4x,
在Rt△CMB中,CM=3/4x,BM=AM-AB=x-6,由勾股定理得:BM2+CM2=BC2,
∴(x-6)2+(3/4x)2=62,
x=0(舍去),x=192/25,
CN=192/25,
∵∠A=∠FGD=90°,
∴∠AED+∠AFG=180°,
∵∠AFG+∠NFC=180°,
∴∠AED=∠CFN,
∵∠A=∠CNF=90°,
∴△AED∽△NFC,
∴
DE/CF=AD/CN=(8/192)/ 25=25/24
∴∠A=∠FDC=90°,
∵CF⊥DE,
∴∠DGF=90°,
∴∠ADE+∠CFD=90°,∠ADE+∠AED=90°,
∴∠CFD=∠AED,
∵∠A=∠CDF,
∴△AED∽△DFC,
∴
DE/CF=AD/CD;
(2)当∠B+∠EGC=180°时,
DE/CF=AD/CD成立.
证明:∵四边形ABCD是平行四边形,
∴∠B=∠ADC,AD∥BC,
∴∠B+∠A=180°,
∵∠B+∠EGC=180°,
∴∠A=∠EGC=∠FGD,
∵∠FDG=∠EDA,
∴△DFG∽△DEA,
∴DE/AD=DF/DG,
∵∠B=∠ADC,∠B+∠EGC=180°,∠EGC+∠DGC=180°,
∴∠CGD=∠CDF,
∵∠GCD=∠DCF,
∴△CGD∽△CDF,
∴DF/DG=CF/CD,
∴DE/AD=CF/CD,
∴DE/CF=AD/CD,
即当∠B+∠EGC=180°时,
DE/CF=AD/CD成立.
(3)
DE/CF=25/24.
理由是:过C作CN⊥AD于N,CM⊥AB交AB延长线于M,连接BD,设CN=x,
∵∠BAD=90°,即AB⊥AD,
∴∠A=∠M=∠CNA=90°,
∴四边形AMCN是矩形,
∴AM=CN,AN=CM,
∵在△BAD和△BCD中
AD=CD
AB=BC
BD=BD
∴△BAD≌△BCD(SSS),
∴∠BCD=∠A=90°,
∴∠ABC+∠ADC=180°,
∵∠ABC+∠CBM=180°,
∴∠MBC=∠ADC,
∵∠CND=∠M=90°,
∴△BCM∽△DCN,
∴CM/CN=BC/CD,
∴CM/x=6/8,
∴CM=3/4x,
在Rt△CMB中,CM=3/4x,BM=AM-AB=x-6,由勾股定理得:BM2+CM2=BC2,
∴(x-6)2+(3/4x)2=62,
x=0(舍去),x=192/25,
CN=192/25,
∵∠A=∠FGD=90°,
∴∠AED+∠AFG=180°,
∵∠AFG+∠NFC=180°,
∴∠AED=∠CFN,
∵∠A=∠CNF=90°,
∴△AED∽△NFC,
∴
DE/CF=AD/CN=(8/192)/ 25=25/24
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询