数学极坐标与参数方程,第二小问怎么做?要过程!

 我来答
西之痛
2015-10-01 · TA获得超过4760个赞
知道大有可为答主
回答量:5000
采纳率:71%
帮助的人:4054万
展开全部
(2)曲线C1:{x=tcosαy=tsinα(t为参数,t≠0),化为普通方程:y=xtanα,其中0≤α<π,其极坐标方程为:θ=α(ρ∈R,ρ≠0),
∴A(2sinα,α),B(23√cosα,α).
∴|AB|=|2sinα−23√cosα|=4|sin(α−π3)|,
当α=5π6时,|AB|取得最大值4.
更多追问追答
追答
(2)曲线C1:{x=tcosαy=tsinα(t为参数,t≠0),化为普通方程:y=xtanα,其中0≤α<π,其极坐标方程为:θ=α(ρ∈R,ρ≠0),
∴A(2sinα,α),B(2√3cosα,α).
∴|AB|=|2sinα−2√3cosα|=4|sin(α−π3)|,
当α=5π/6时,|AB|取得最大值4.
采纳吗?
富港检测技术(东莞)有限公司_
2024-04-02 广告
正弦振动多用于找出产品设计或包装设计的脆弱点。看在哪一个具体频率点响应最大(共振点);正弦振动在任一瞬间只包含一种频率的振动,而随机振动在任一瞬间包含频谱范围内的各种频率的振动。由于随机振动包含频谱内所有的频率,所以样品上的共振点会同时激发... 点击进入详情页
本回答由富港检测技术(东莞)有限公司_提供
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式