数学极坐标与参数方程,第二小问怎么做?要过程!
1个回答
展开全部
(2)曲线C1:{x=tcosαy=tsinα(t为参数,t≠0),化为普通方程:y=xtanα,其中0≤α<π,其极坐标方程为:θ=α(ρ∈R,ρ≠0),
∴A(2sinα,α),B(23√cosα,α).
∴|AB|=|2sinα−23√cosα|=4|sin(α−π3)|,
当α=5π6时,|AB|取得最大值4.
∴A(2sinα,α),B(23√cosα,α).
∴|AB|=|2sinα−23√cosα|=4|sin(α−π3)|,
当α=5π6时,|AB|取得最大值4.
更多追问追答
追答
(2)曲线C1:{x=tcosαy=tsinα(t为参数,t≠0),化为普通方程:y=xtanα,其中0≤α<π,其极坐标方程为:θ=α(ρ∈R,ρ≠0),
∴A(2sinα,α),B(2√3cosα,α).
∴|AB|=|2sinα−2√3cosα|=4|sin(α−π3)|,
当α=5π/6时,|AB|取得最大值4.
采纳吗?
火丰科技
2024-11-28 广告
2024-11-28 广告
致力于从事惯性测量、卫星导航等产品的研发、生产的高新技术企业。公司旗下投资多条自动化生产线分别分布于西安、深圳、珠海等地,其中包括光纤陀螺、MEMS惯导、石英加速度计、电子对抗通信产品生产线,拥有中国先进的惯性导航产品及电子对抗产品生产条件...
点击进入详情页
本回答由火丰科技提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询