怎么理解导数的概念?

 我来答
匿名用户
2015-10-28
展开全部
首先假设已经知道极限的概念,知道函数的极限的概念,知道函数连续的概念。
函数在某点的导数的定义:首先要求函数在该点连续,简单点就是
如果函数值的变化量/自变量的变化量,在自变量趋于0的情况下有极限,
则称这个函数在这个点可导,这个极限就叫做函数在该点的导数。

如果函数在某个区间内的每个点可导,则称函数在这个区间内可导。
若将所有点对应的导数作为函数值,组成一个新的函数,这个函数叫做原函数的导函数。

值得注意的是,并不一定所有函数,在所有地方都可导。

导数其几何、物理意义是:
几何:函数在某点的“斜率”,斜率一般是指直线。如果曲线的话,需要配合极限的概念来理解斜率。
物理意义:比如位移的导函数的意义就是速度,速度的导函数的意义是加速度。

这只是简要介绍了导数的概念而已,前奏和后续的讨论相对于高中学生来说比较复杂,比较缜密。
现在高中也要求学习导数了吗?加速度是速度的一阶导数,是位移的二阶导数,高阶导数就复杂了。
素淡若白
推荐于2017-11-21 · TA获得超过6233个赞
知道大有可为答主
回答量:3413
采纳率:60%
帮助的人:641万
展开全部
导数是微积分中的重要概念。编辑本段  导数定义为:当自变量的增量趋于零时,因变量的增量与自变量的增量之商的极限。在一个函数存在导数时,称这个函数可导或者可微分。可导的函数一定连续。不连续的函数一定不可导。
  导数另一个定义:当x=x0时,f‘(x0)是一个确定的数。这样,当x变化时,f'(x)便是x的一个函数,我们称他为f(x)的导函数(derivative function)(简称导数)。
  y=f(x)的导数有时也记作y',即 f'(x)=y'=lim⊿x→0[f(x+⊿x)-f(x)]/⊿x
  物理学、几何学、经济学等学科中的一些重要概念都可以用导数来表示。如,导数可以表示运动物体的瞬时速度和加速度、可以表示曲线在一点的斜率、还可以表示经济学中的边际和弹性。
  以上说的经典导数定义可以认为是反映局部欧氏空间的函数变化。 为了研究更一般的流形上的向量丛截面(比如切向量场)的变化,导数的概念被推广为所谓的“联络”。 有了联络,人们就可以研究大范围的几何问题,这是微分几何与物理中最重要的基础概念之一。
  注意:1.f'(x)<0是f(x)为减函数的充分不必要条件,不是充要条件。
  2.导数为零的点不一定是极值点。当函数为常值函数,没有增减性,即没有极值点。但导数为零。 求导数的方法编辑本段  (1)求函数y=f(x)在x0处导数的步骤:
    ① 求函数的增量Δy=f(x0+Δx)-f(x0)
  ② 求平均变化率
  ③ 取极限,得导数。
  
 
本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 1条折叠回答
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式