帮我做一下高二数学题 谢谢
若a,b为正实数,且a,b=1,则S=根号2ab-a平方-b平方的最大值是a+b=1不是a,b=1写错了不好意思...
若a,b为正实数,且a,b=1,则S=根号2ab-a平方-b平方的最大值
是a+b=1 不是a,b=1 写错了 不好意思 展开
是a+b=1 不是a,b=1 写错了 不好意思 展开
3个回答
展开全部
S=√2ab- a^2- b^2
移向得:S+ a^2+ b^2=√2ab
S+(a+b) ^2-2ab=√2ab
又因为a+b=1,得
S+1-2ab=√2ab
S=2ab+√2ab-1
令√2ab=t 则 S=t^2+t-1=(t+1/2)^2-5/4
因为a、b为正实数,则 a^2+b^2≥2ab
(a+b)^2-2ab≥2ab
则 4ab≤(a+b)^2=1
√ab≤1/2
t≤√2/2
S=(t+1/2)^2-5/4≤(√2/2+1/2)^2-5/4=(√2-1)/2
所以 S 的最大值为(√2-1)/2
移向得:S+ a^2+ b^2=√2ab
S+(a+b) ^2-2ab=√2ab
又因为a+b=1,得
S+1-2ab=√2ab
S=2ab+√2ab-1
令√2ab=t 则 S=t^2+t-1=(t+1/2)^2-5/4
因为a、b为正实数,则 a^2+b^2≥2ab
(a+b)^2-2ab≥2ab
则 4ab≤(a+b)^2=1
√ab≤1/2
t≤√2/2
S=(t+1/2)^2-5/4≤(√2/2+1/2)^2-5/4=(√2-1)/2
所以 S 的最大值为(√2-1)/2
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询