人教版高一数学基础知识

 我来答
匿名用户
2016-07-16
展开全部
不好意思我不知道是必修几了不过这是必修一到必修五的望采纳~一、集合与简易逻辑:一、理解集合中的有关概念(1)集合中元素的特征:确定性,互异性,无序性。(2)集合与元素的关系用符号=表示。(3)常用数集的符号表示:自然数集;正整数集;整数集;有理数集、实数集。(4)集合的表示法:列举法,描述法,韦恩图。(5)空集是指不含任何元素的集合。空集是任何集合的子集,是任何非空集合的真子集。二、函数一、映射与函数:(1)映射的概念:(2)一一映射:(3)函数的概念:二、函数的三要素:相同函数的判断方法:①对应法则;②定义域(两点必须同时具备)(1)函数解析式的求法:①定义法(拼凑):②换元法:③待定系数法:④赋值法:(2)函数定义域的求法:①含参问题的定义域要分类讨论;②对于实际问题,在求出函数解析式后;必须求出其定义域,此时的定义域要根据实际意义来确定。(3)函数值域的求法:①配方法:转化为二次函数,利用二次函数的特征来求值;常转化为型如:的形式;②逆求法(反求法):通过反解,用来表示,再由的取值范围,通过解不等式,得出的取值范围;常用来解,型如:;④换元法:通过变量代换转化为能求值域的函数,化归思想;⑤三角有界法:转化为只含正弦、余弦的函数,运用三角函数有界性来求值域;⑥基本不等式法:转化成型如:,利用平均值不等式公式来求值域;⑦单调性法:函数为单调函数,可根据函数的单调性求值域。⑧数形结合:根据函数的几何图形,利用数型结合的方法来求值域。三、函数的性质:函数的单调性、奇偶性、周期性单调性:定义:注意定义是相对与某个具体的区间而言。判定方法有:定义法(作差比较和作商比较)导数法(适用于多项式函数)复合函数法和图像法。应用:比较大小,证明不等式,解不等式。奇偶性:定义:注意区间是否关于原点对称,比较f(x)与f(-x)的关系。f(x)-f(-x)=0f(x)=f(-x)f(x)为偶函数;f(x)+f(-x)=0f(x)=-f(-x)f(x)为奇函数。判别方法:定义法,图像法,复合函数法应用:把函数值进行转化求解。周期性:定义:若函数f(x)对定义域内的任意x满足:f(x+T)=f(x),则T为函数f(x)的周期。其他:若函数f(x)对定义域内的任意x满足:f(x+a)=f(x-a),则2a为函数f(x)的周期.应用:求函数值和某个区间上的函数解析式。四、图形变换:函数图像变换:(重点)要求掌握常见基本函数的图像,掌握函数图像变换的一般规律。常见图像变化规律:(注意平移变化能够用向量的语言解释,和按向量平移联系起来思考)平移变换y=f(x)→y=f(x+a),y=f(x)+b注意:(ⅰ)有系数,要先提取系数。如:把函数y=f(2x)经过平移得到函数y=f(2x+4)的图象。(ⅱ)会结合向量的平移,理解按照向量(m,n)平移的意义。对称变换y=f(x)→y=f(-x),关于y轴对称y=f(x)→y=-f(x),关于x轴对称y=f(x)→y=f|x|,把x轴上方的图象保留,x轴下方的图象关于x轴对称y=f(x)→y=|f(x)|把y轴右边的图象保留,然后将y轴右边部分关于y轴对称。(注意:它是一个偶函数)伸缩变换:y=f(x)→y=f(ωx),y=f(x)→y=Af(ωx+φ)具体参照三角函数的图象变换。一个重要结论:若f(a-x)=f(a+x),则函数y=f(x)的图像关于直线x=a对称;五、反函数:(1)定义:(2)函数存在反函数的条件:(3)互为反函数的定义域与值域的关系:(4)求反函数的步骤:①将看成关于的方程,解出,若有两解,要注意解的选择;②将互换,得;③写出反函数的定义域(即的值域)。(5)互为反函数的图象间的关系:(6)原函数与反函数具有相同的单调性;(7)原函数为奇函数,则其反函数仍为奇函数;原函数为偶函数,它一定不存在反函数。七、常用的初等函数:(1)一元一次函数:(2)一元二次函数:一般式两点式顶点式二次函数求最值问题:首先要采用配方法,化为一般式,有三个类型题型:(1)顶点固定,区间也固定。如:(2)顶点含参数(即顶点变动),区间固定,这时要讨论顶点横坐标何时在区间之内,何时在区间之外。(3)顶点固定,区间变动,这时要讨论区间中的参数.等价命题在区间上有两根在区间上有两根在区间或上有一根注意:若在闭区间讨论方程有实数解的情况,可先利用在开区间上实根分布的情况,得出结果,在令和检查端点的情况。(3)反比例函数:(4)指数函数:指数函数:y=(a>o,a≠1),图象恒过点(0,1),单调性与a的值有关,在解题中,往往要对a分a>1和0o,a≠1)图象恒过点(1,0),单调性与a的值有关,在解题中,往往要对a分a>1和00,则。即不等式两边同号时,不等式两边取倒数,不等号方向要改变。②如果对不等式两边同时乘以一个代数式,要注意它的正负号,如果正负号未定,要注意分类讨论。③图象法:利用有关函数的图象(指数函数、对数函数、二次函数、三角函数的图象),直接比较大小。④中介值法:先把要比较的代数式与“0”比,与“1”比,然后再比较它们的大小二、均值不等式:两个数的算术平均数不小于它们的几何平均数。基本应用:①放缩,变形;②求函数最值:注意:①一正二定三相等;②积定和最小,和定积最大。常用的方法为:拆、凑、平方;三、绝对值不等式:注意:上述等号“=”成立的条件;四、常用的基本不等式:五、证明不等式常用方法:(1)比较法:作差比较:作差比较的步骤:⑴作差:对要比较大小的两个数(或式)作差。⑵变形:对差进行因式分解或配方成几个数(或式)的完全平方和。⑶判断差的符号:结合变形的结果及题设条件判断差的符号。注意:若两个正数作差比较有困难,可以通过它们的平方差来比较大小。(2)综合法:由因导果。(3)分析法:执果索因。基本步骤:要证……只需证……,只需证……(4)反证法:正难则反。(5)放缩法:将不等式一侧适当的放大或缩小以达证题目的。放缩法的方法有:⑴添加或舍去一些项,⑵将分子或分母放大(或缩小)⑶利用基本不等式,(6)换元法:换元的目的就是减少不等式中变量,以使问题化难为易,化繁为简,常用的换元有三角换元和代数换元。(7)构造法:通过构造函数、方程、数列、向量或不等式来证明不等式;十、不等式的解法:(1)一元二次不等式:一元二次不等式二次项系数小于零的,同解变形为二次项系数大于零;注:要对进行讨论:(2)绝对值不等式:若,则;;注意:(1)解有关绝对值的问题,考虑去绝对值,去绝对值的方法有:⑴对绝对值内的部分按大于、等于、小于零进行讨论去绝对值;(2).通过两边平方去绝对值;需要注意的是不等号两边为非负值。(3).含有多个绝对值符号的不等式可用“按零点分区间讨论”的方法来解。(4)分式不等式的解法:通解变形为整式不等式;(5)不等式组的解法:分别求出不等式组中,每个不等式的解集,然后求其交集,即是这个不等式组的解集,在求交集中,通常把每个不等式的解集画在同一条数轴上,取它们的公共部分。(6)解含有参数的不等式:解含参数的不等式时,首先应注意考察是否需要进行分类讨论.如果遇到下述情况则一般需要讨论:①不等式两端乘除一个含参数的式子时,则需讨论这个式子的正、负、零性.②在求解过程中,需要使用指数函数、对数函数的单调性时,则需对它们的底数进行讨论.③在解含有字母的一元二次不等式时,需要考虑相应的二次函数的开口方向,对应的一元二次方程根的状况(有时要分析△),比较两个根的大小,设根为(或)但含参数,要讨论。十一、数列本章是高考命题的主体内容之一,应切实进行全面、深入地复习,并在此基础上,突出解决下述几个问题:(1)等差、等比数列的证明须用定义证明,值得注意的是,若给出一个数列的前项和,则其通项为若满足则通项公式可写成.(2)数列计算是本章的中心内容,利用等差数列和等比数列的通项公式、前项和公式及其性质熟练地进行计算,是高考命题重点考查的内容.(3)解答有关数列问题时,经常要运用各种数学思想.善于使用各种数学思想解答数列题,是我们复习应达到的目标.①函数思想:等差等比数列的通项公式求和公式都可以看作是的函数,所以等差等比数列的某些问题可以化为函数问题求解.②分类讨论思想:用等比数列求和公式应分为及;已知求时,也要进行分类;③整体思想:在解数列问题时,应注意摆脱呆板使用公式求解的思维定势,运用整体思想求解.(4)在解答有关的数列应用题时,要认真地进行分析,将实际问题抽象化,转化为数学问题,再利用有关数列知识和方法来解决.解答此类应用题是数学能力的综合运用,决不是简单地模仿和套用所能完成的.特别注意与年份有关的等比数列的第几项不要弄错.一、基本概念:1、数列的定义及表示方法:2、数列的项与项数:3、有穷数列与无穷数列:4、递增(减)、摆动、循环数列:5、数列{an}的通项公式an:6、数列的前n项和公式Sn:7、等差数列、公差d、等差数列的结构:8、等比数列、公比q、等比数列的结构:二、基本公式:9、一般数列的通项an与前n项和Sn的关系:an=10、等差数列的通项公式:an=a1+(n-1)dan=ak+(n-k)d(其中a1为首项、ak为已知的第k项)当d≠0时,an是关于n的一次式;当d=0时,an是一个常数。11、等差数列的前n项和公式:Sn=Sn=Sn=当d≠0时,Sn是关于n的二次式且常数项为0;当d=0时(a1≠0),Sn=na1是关于n的正比例式。12、等比数列的通项公式:an=a1qn-1an=akqn-k(其中a1为首项、ak为已知的第k项,an≠0)13、等比数列的前n项和公式:当q=1时,Sn=na1(是关于n的正比例式);当q≠1时,Sn=Sn=三、有关等差、等比数列的结论14、等差数列{an}的任意连续m项的和构成的数列Sm、S2m-Sm、S3m-S2m、S4m-S3m、……仍为等差数列。15、等差数列{an}中,若m+n=p+q,则16、等比数列{an}中,若m+n=p+q,则17、等比数列{an}的任意连续m项的和构成的数列Sm、S2m-Sm、S3m-S2m、S4m-S3m、……仍为等比数列。18、两个等差数列{an}与{bn}的和差的数列{an+bn}、{an-bn}仍为等差数列。19、两个等比数列{an}与{bn}的积、商、倒数组成的数列{anbn}、、仍为等比数列。20、等差数列{an}的任意等距离的项构成的数列仍为等差数列。21、等比数列{an}的任意等距离的项构成的数列仍为等比数列。22、三个数成等差的设法:a-d,a,a+d;四个数成等差的设法:a-3d,a-d,,a+d,a+3d23、三个数成等比的设法:a/q,a,aq;四个数成等比的错误设法:a/q3,a/q,aq,aq324、{an}为等差数列,则(c>0)是等比数列。25、{bn}(bn>0)是等比数列,则{logcbn}(c>0且c1)是等差数列。四、数列求和的常用方法:公式法、裂项相消法、错位相减法、倒序相加法等。关键是找数列的通项结构。26、分组法求数列的和:如an=2n+3n27、错位相减法求和:如an=(2n-1)2n28、裂项法求和:如an=1/n(n+1)29、倒序相加法求和:30、求数列{an}的最大、最小项的方法:①an+1-an=……如an=-2n2+29n-3②an=f(n)研究函数f(n)的增减性31、在等差数列中,有关Sn的最值问题——常用邻项变号法求解:(1)当>0,d0时,满足的项数m使得取最小值。在解含绝对值的数列最值问题时,注意转化思想的应用。十二、平面向量1.基本概念:向量的定义、向量的模、零向量、单位向量、相反向量、共线向量、相等向量。2.加法与减法的代数运算:(1)若a=(x1,y1),b=(x2,y2)则ab=(x1+x2,y1+y2).向量加法与减法的几何表示:平行四边形法则、三角形法则。向量加法有如下规律:+=+(交换律);+(+c)=(+)+c(结合律);3.实数与向量的积:实数与向量的积是一个向量。(1)||=||·||;(2)当a>0时,与a的方向相同;当a<0时,与a的方向相反;当a=0时,a=0.两个向量共线的充要条件:(1)向量b与非零向量共线的充要条件是有且仅有一个实数,使得b=.(2)若=(),b=()则‖b.平面向量基本定理:若e1、e2是同一平面内的两个不共线向量,那么对于这一平面内的任一向量,有且只有一对实数,,使得=e1+e2.4.P分有向线段所成的比:设P1、P2是直线上两个点,点P是上不同于P1、P2的任意一点,则存在一个实数使=,叫做点P分有向线段所成的比。当点P在线段上时,>0;当点P在线段或的延长线上时,<0;分点坐标公式:若=;的坐标分别为(),(),();则(≠-1),中点坐标公式:.5.向量的数量积:(1).向量的夹角:已知两个非零向量与b,作=,=b,则∠AOB=()叫做向量与b的夹角。(2).两个向量的数量积:已知两个非零向量与b,它们的夹角为,则·b=||·|b|cos.其中|b|cos称为向量b在方向上的投影.(3).向量的数量积的性质:若=(),b=()则e·=·e=||cos(e为单位向量);⊥b·b=0(,b为非零向量);||=;cos==.(4).向量的数量积的运算律:·b=b·;()·b=(·b)=·(b);(+b)·c=·c+b·c.6.主要思想与方法:本章主要树立数形转化和结合的观点,以数代形,以形观数,用代数的运算处理几何问题,特别是处理向量的相关位置关系,正确运用共线向量和平面向量的基本定理,计算向量的模、两点的距离、向量的夹角,判断两向量是否垂直等。由于向量是一新的工具,它往往会与三角函数、数列、不等式、解几等结合起来进行综合考查,是知识的交汇点。十三、立体几何1.平面的基本性质:掌握三个公理及推论,会说明共点、共线、共面问题。能够用斜二测法作图。2.空间两条直线的位置关系:平行、相交、异面的概念;会求异面直线所成的角和异面直线间的距离;证明两条直线是异面直线一般用反证法。3.直线与平面①位置关系:平行、直线在平面内、直线与平面相交。②直线与平面平行的判断方法及性质,判定定理是证明平行问题的依据。③直线与平面垂直的证明方法有哪些?④直线与平面所成的角:关键是找它在平面内的射影,范围是{00.900}⑤三垂线定理及其逆定理:每年高考试题都要考查这个定理.三垂线定理及其逆定理主要用于证明垂直关系与空间图形的度量.如:证明异面直线垂直,确定二面角的平面角,确定点到直线的垂线.4.平面与平面(1)位置关系:平行、相交,(垂直是相交的一种特殊情况)(2)掌握平面与平面平行的证明方法和性质。(3)掌握平面与平面垂直的证明方法和性质定理。尤其是已知两平面垂直,一般是依据性质定理,可以证明线面垂直。(4)两平面间的距离问题→点到面的距离问题→(5)二面角。二面角的平面交的作法及求法:①定义法,一般要利用图形的对称性;一般在计算时要解斜三角形;②垂线、斜线、射影法,一般要求平面的垂线好找,一般在计算时要解一个直角三角形。③射影面积法,一般是二面交的两个面只有一个公共点,两个面的交线不容易找到时用此法?
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
狮子lihao1234
2017-08-06
知道答主
回答量:1
采纳率:0%
帮助的人:973
展开全部
人教版高一数学教程
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式