展开全部
列方程解应用题的关键是:仔细审题,找出能正确表达整个题数量关系的一个相等关系,再设未知数,并将这个相等关系用含未知数的式子表示出来。
主要是找数量关系的一个相等关系,你主要是多做题,就会提高你的解题水平
例1. 某商场将彩电先按原售价提高30%,然后再在广告中写上“大酬宾、八折优惠”,结果每台彩电比原售价多赚了112元,求每台彩电的原价应是多少元?
分析 相等关系是:实际售出价-原售价=112(元)。
解 设每台彩电的原售价为x元,根据题意,得: .
解得:x=2800
答:每台彩电的原售价是2800元。
例2. 为了鼓励居民用电,某市电力公司规定了如下的计费方法:每月用电不超过100度,按每度0.5元计算;每月用电超过100度,超出部分按每度0.4元计算。
(1)若某用户2006年7月份交电费72元,那么该用户7月份用电多少度?
(2)若某用户2006年8月平均每度电费0.45元,那么该用户8月份用电多少度?应交电费多少元?
分析:
(1)由计费方法判断7月份交电费72元时,用电量超过100度;(2)由0.5元>0.45元>0.40元知,该用户8月份用电超过100度。
解(1)100度的电费为0.5×100=50(元)。
因为72>50,所以该用户7月份的用电量超过了100度。设超出x度,则0.4x=72-50,x=55.
故该用户7月份共用电100+55=155(度)。
(2)设该用户8月份用电x度,则应交电费为0.45x元。因为8月份平均每度电费0.45元
<0.50元,所以8月份的用电量超过100度。根据题意,得0.5×100+0.4(x-100)=0.45x.
解得:x=200.则0.45x=0.45×200=90(元)。
答:该用户7月份用电155度,8月份用电200度,应交电费90元。
练习
育英中学七年级(2)班决定派小聪、小明两人选购圆珠笔、钢笔共22支,捐给结对的山区某学校同学,他们去了商场,看到圆珠笔每支5元,钢笔每支6元。
(1)若他俩购买两类笔刚好用去120元,问钢笔、圆珠笔各买多少支?
(2)若圆珠笔9折优惠,钢笔8折优惠,在所需费用不超过100元的前提下,请你设计出一种选购方案。
(参考答案:(1)圆珠笔12支,钢笔10支;(2)答案不惟一,如圆珠笔18支,钢笔4支;圆珠笔19支,钢笔3支等。)
主要是找数量关系的一个相等关系,你主要是多做题,就会提高你的解题水平
例1. 某商场将彩电先按原售价提高30%,然后再在广告中写上“大酬宾、八折优惠”,结果每台彩电比原售价多赚了112元,求每台彩电的原价应是多少元?
分析 相等关系是:实际售出价-原售价=112(元)。
解 设每台彩电的原售价为x元,根据题意,得: .
解得:x=2800
答:每台彩电的原售价是2800元。
例2. 为了鼓励居民用电,某市电力公司规定了如下的计费方法:每月用电不超过100度,按每度0.5元计算;每月用电超过100度,超出部分按每度0.4元计算。
(1)若某用户2006年7月份交电费72元,那么该用户7月份用电多少度?
(2)若某用户2006年8月平均每度电费0.45元,那么该用户8月份用电多少度?应交电费多少元?
分析:
(1)由计费方法判断7月份交电费72元时,用电量超过100度;(2)由0.5元>0.45元>0.40元知,该用户8月份用电超过100度。
解(1)100度的电费为0.5×100=50(元)。
因为72>50,所以该用户7月份的用电量超过了100度。设超出x度,则0.4x=72-50,x=55.
故该用户7月份共用电100+55=155(度)。
(2)设该用户8月份用电x度,则应交电费为0.45x元。因为8月份平均每度电费0.45元
<0.50元,所以8月份的用电量超过100度。根据题意,得0.5×100+0.4(x-100)=0.45x.
解得:x=200.则0.45x=0.45×200=90(元)。
答:该用户7月份用电155度,8月份用电200度,应交电费90元。
练习
育英中学七年级(2)班决定派小聪、小明两人选购圆珠笔、钢笔共22支,捐给结对的山区某学校同学,他们去了商场,看到圆珠笔每支5元,钢笔每支6元。
(1)若他俩购买两类笔刚好用去120元,问钢笔、圆珠笔各买多少支?
(2)若圆珠笔9折优惠,钢笔8折优惠,在所需费用不超过100元的前提下,请你设计出一种选购方案。
(参考答案:(1)圆珠笔12支,钢笔10支;(2)答案不惟一,如圆珠笔18支,钢笔4支;圆珠笔19支,钢笔3支等。)
展开全部
关键是找到题目中的等量关系。
1.审题:默读题目,认真审题,理解题意,弄清题目中的数量关系,找出其中的等量关系,并用铅笔标注出来。
2.设未知数:一般的,求什么设什么,也可以间接地设其他未知量。设出未知数后,表示出有关的含字母的式子。
3. 列方程:利用已找出的等量关系列出方程。
4.解方程:解所列的方程,求出未知数的值。
5.检验,写答案:检验所求出的未知数的值是否是方程的解,•是否符合实际,检验后写出答案。
1.审题:默读题目,认真审题,理解题意,弄清题目中的数量关系,找出其中的等量关系,并用铅笔标注出来。
2.设未知数:一般的,求什么设什么,也可以间接地设其他未知量。设出未知数后,表示出有关的含字母的式子。
3. 列方程:利用已找出的等量关系列出方程。
4.解方程:解所列的方程,求出未知数的值。
5.检验,写答案:检验所求出的未知数的值是否是方程的解,•是否符合实际,检验后写出答案。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
把书上的例题都看懂就差不多了,领会书上的用意,再做几道题看看会不会用了,不必做太多,看看书,
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2011-01-09
展开全部
列方程解应用题的关键是:仔细审题,找出能正确表达整个题数量关系的一个相等关系,再设未知数,并将这个相等关系用含未知数的式子表示出来。
主要是找数量关系的一个相等关系,你主要是多做题,就会提高你的解题水平
例1. 某商场将彩电先按原售价提高30%,然后再在广告中写上“大酬宾、八折优惠”,结果每台彩电比原售价多赚了112元,求每台彩电的原价应是多少元?
分析 相等关系是:实际售出价-原售价=112(元)。
解 设每台彩电的原售价为x元,根据题意,得: .
解得:x=2800
答:每台彩电的原售价是2800元。
例2. 为了鼓励居民用电,某市电力公司规定了如下的计费方法:每月用电不超过100度,按每度0.5元计算;每月用电超过100度,超出部分按每度0.4元计算。
(1)若某用户2006年7月份交电费72元,那么该用户7月份用电多少度?
(2)若某用户2006年8月平均每度电费0.45元,那么该用户8月份用电多少度?应交电费多少元?
分析:
(1)由计费方法判断7月份交电费72元时,用电量超过100度;(2)由0.5元>0.45元>0.40元知,该用户8月份用电超过100度。
解(1)100度的电费为0.5×100=50(元)。
因为72>50,所以该用户7月份的用电量超过了100度。设超出x度,则0.4x=72-50,x=55.
故该用户7月份共用电100+55=155(度)。
(2)设该用户8月份用电x度,则应交电费为0.45x元。因为8月份平均每度电费0.45元
<0.50元,所以8月份的用电量超过100度。根据题意,得0.5×100+0.4(x-100)=0.45x.
解得:x=200.则0.45x=0.45×200=90(元)。
答:……
主要是找数量关系的一个相等关系,你主要是多做题,就会提高你的解题水平
例1. 某商场将彩电先按原售价提高30%,然后再在广告中写上“大酬宾、八折优惠”,结果每台彩电比原售价多赚了112元,求每台彩电的原价应是多少元?
分析 相等关系是:实际售出价-原售价=112(元)。
解 设每台彩电的原售价为x元,根据题意,得: .
解得:x=2800
答:每台彩电的原售价是2800元。
例2. 为了鼓励居民用电,某市电力公司规定了如下的计费方法:每月用电不超过100度,按每度0.5元计算;每月用电超过100度,超出部分按每度0.4元计算。
(1)若某用户2006年7月份交电费72元,那么该用户7月份用电多少度?
(2)若某用户2006年8月平均每度电费0.45元,那么该用户8月份用电多少度?应交电费多少元?
分析:
(1)由计费方法判断7月份交电费72元时,用电量超过100度;(2)由0.5元>0.45元>0.40元知,该用户8月份用电超过100度。
解(1)100度的电费为0.5×100=50(元)。
因为72>50,所以该用户7月份的用电量超过了100度。设超出x度,则0.4x=72-50,x=55.
故该用户7月份共用电100+55=155(度)。
(2)设该用户8月份用电x度,则应交电费为0.45x元。因为8月份平均每度电费0.45元
<0.50元,所以8月份的用电量超过100度。根据题意,得0.5×100+0.4(x-100)=0.45x.
解得:x=200.则0.45x=0.45×200=90(元)。
答:……
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
1 审题清楚 2 仔细思考 3 联系实际 4 就是想
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询