已知f(x)=sin(2x+π/6)+sin(2x-π/6)+2cos^2x+a,当x属于[-π/4,π/4]时,f(x)的最小值为-3,求实数a的值
2个回答
展开全部
f(x)=sin(2x+pi/6)+sin(2x-pi/6)+2(cosx)^2+a
=2sin2xcos(pi/6)+cos2x+1+a
注意到sin(pi/6)=1/2
f(x)=2(sin2xcos(pi/6)+cos2xsin(pi/6))+1+a
=2sin(2x+pi/6)+1+a
-pi/4<=x<=pi/4
则-pi/3<=2x+pi/6<=(2/3)pi
则f在[-pi/4,pi/4]上取最小值f(-pi/4)=-3^0.5+1+a
-3^0.5+1+a=-3
得a=3^0.5-4,其中3^0.5表示根号3
=2sin2xcos(pi/6)+cos2x+1+a
注意到sin(pi/6)=1/2
f(x)=2(sin2xcos(pi/6)+cos2xsin(pi/6))+1+a
=2sin(2x+pi/6)+1+a
-pi/4<=x<=pi/4
则-pi/3<=2x+pi/6<=(2/3)pi
则f在[-pi/4,pi/4]上取最小值f(-pi/4)=-3^0.5+1+a
-3^0.5+1+a=-3
得a=3^0.5-4,其中3^0.5表示根号3
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询