
已知函数f(x)=(sinx+cosx)^2+cos2x的最小值是
1个回答
展开全部
f(x)=(sinx+cosx)^2+cos2x
=sin^2x+2sinxcosx+cos^2x+cos2x
=1+sin2x+cos2x
=√2(sin2x*√2/2+cos2x*√2/2)+1
=√2(sin2xcosπ/4+cos2xsinπ/4)+1
=√2sin(2x+π/4)+1
所以当sin(2x+π/4)=-1时有最小值1-√2
=sin^2x+2sinxcosx+cos^2x+cos2x
=1+sin2x+cos2x
=√2(sin2x*√2/2+cos2x*√2/2)+1
=√2(sin2xcosπ/4+cos2xsinπ/4)+1
=√2sin(2x+π/4)+1
所以当sin(2x+π/4)=-1时有最小值1-√2
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询