一道中考数学题(急!)
如图,已知在矩形ABCD中,AB=2,BC=3,P是线段AD边上的任意一点(不含端点A、D),连结PC,过点P作PE⊥PC交AB于E(1)在线段AD上是否存在不同于P的点...
如图,已知在矩形ABCD中,AB=2,BC=3,P是线段AD边上的任意一点(不含端点A、D),连结PC, 过点P作PE⊥PC交AB于E
(1)在线段AD上是否存在不同于P的点Q,使得QC⊥QE?若存在,求线段AP与AQ之间的数量关系;若不存在,请说明理由;
请写出详细解答过程! 展开
(1)在线段AD上是否存在不同于P的点Q,使得QC⊥QE?若存在,求线段AP与AQ之间的数量关系;若不存在,请说明理由;
请写出详细解答过程! 展开
1个回答
展开全部
(1)假设存在这样的点Q;
∵PE⊥PC,∴∠APE+∠DPC=90°,
∵∠D=90°,∴∠DPC+∠DCP=90°,
∴∠APE=∠DCP,又∵∠A=∠D=90°,
∴△APE∽△DCP,
∴ AP/DC= AE/DP,∴AP•DP=AE•DC;
同理可得AQ•DQ=AE•DC;
∴AQ•DQ=AP•DP,即AQ•(3-AQ)=AP•(3-AP),
∴3AQ-AQ^2=3AP-AP^2,
∴AP^2-AQ^2=3AP-3AQ,
∴(AP+AQ)(AP-AQ)=3(AP-AQ);
∵AP≠AQ,
∴AP+AQ=3(2分)
∵AP≠AQ,
∴AP≠ 3/2,即P不能是AD的中点,
∴当P是AD的中点时,满足条件的Q点不存在.
当P不是AD的中点时,总存在这样的点Q满足条件,此时AP+AQ=3.(
∵PE⊥PC,∴∠APE+∠DPC=90°,
∵∠D=90°,∴∠DPC+∠DCP=90°,
∴∠APE=∠DCP,又∵∠A=∠D=90°,
∴△APE∽△DCP,
∴ AP/DC= AE/DP,∴AP•DP=AE•DC;
同理可得AQ•DQ=AE•DC;
∴AQ•DQ=AP•DP,即AQ•(3-AQ)=AP•(3-AP),
∴3AQ-AQ^2=3AP-AP^2,
∴AP^2-AQ^2=3AP-3AQ,
∴(AP+AQ)(AP-AQ)=3(AP-AQ);
∵AP≠AQ,
∴AP+AQ=3(2分)
∵AP≠AQ,
∴AP≠ 3/2,即P不能是AD的中点,
∴当P是AD的中点时,满足条件的Q点不存在.
当P不是AD的中点时,总存在这样的点Q满足条件,此时AP+AQ=3.(
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询