1/(1+t^2)^2的积分是什么求不定积分
2个回答
引用huamin8000的回答:
∫1/(1+t^2)^2dt=1/2∫1/[t(1+t^2)^2]dt^2
=-1/2∫1/td1/(1+t^2)
=-1/[2t(1+t^2)]+1/2∫1/(1+t^2)d1/t
=-1/[2t(1+t^2)]-1/2∫1/[t^2(1+t^2)]dt
=-1/[2t(1+t^2)]-1/2∫1/t^2-1/(1+t^2)dt
=-1/[2t(1+t^2)]+1/(2t)-1/2arctant+C
∫1/(1+t^2)^2dt=1/2∫1/[t(1+t^2)^2]dt^2
=-1/2∫1/td1/(1+t^2)
=-1/[2t(1+t^2)]+1/2∫1/(1+t^2)d1/t
=-1/[2t(1+t^2)]-1/2∫1/[t^2(1+t^2)]dt
=-1/[2t(1+t^2)]-1/2∫1/t^2-1/(1+t^2)dt
=-1/[2t(1+t^2)]+1/(2t)-1/2arctant+C
展开全部
最后一步应该是+1/2arctant
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
∫1/(1+t^2)^2dt=1/2∫1/[t(1+t^2)^2]dt^2
=-1/2∫1/td1/(1+t^2)
=-1/[2t(1+t^2)]+1/2∫1/(1+t^2)d1/t
=-1/[2t(1+t^2)]-1/2∫1/[t^2(1+t^2)]dt
=-1/[2t(1+t^2)]-1/2∫1/t^2-1/(1+t^2)dt
=-1/[2t(1+t^2)]+1/(2t)-1/2arctant+C
=-1/2∫1/td1/(1+t^2)
=-1/[2t(1+t^2)]+1/2∫1/(1+t^2)d1/t
=-1/[2t(1+t^2)]-1/2∫1/[t^2(1+t^2)]dt
=-1/[2t(1+t^2)]-1/2∫1/t^2-1/(1+t^2)dt
=-1/[2t(1+t^2)]+1/(2t)-1/2arctant+C
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询