抽象函数求导问题
3个回答
展开全部
当然有区别。
[f(sin²x)]'是函数f(sin²x)对x求导,也即[f(sin²x)]'=df(sin²x)/dx,按照复合函数求导法则,有
[f(sin²x)]'=f'(sin²x)*d(sin²x)/dx=f'(sin²x)*2sinx*cosx
而f'(sin²x)则是函数y=f(z)在点(z,f(z)上的导数(其中,z=sin²x)。
你那个理解是不对的。
[f(sin²x)]'=df(sin²x)/dx=df(sin²x)/d(sin²x)*d(sin²x)/dx
=f'(sin²x)*d(sin²x)/d(sinx)*d(sinx)/dx
=f'(sin²x)*2sinx*cosx
[f(sin²x)]'是函数f(sin²x)对x求导,也即[f(sin²x)]'=df(sin²x)/dx,按照复合函数求导法则,有
[f(sin²x)]'=f'(sin²x)*d(sin²x)/dx=f'(sin²x)*2sinx*cosx
而f'(sin²x)则是函数y=f(z)在点(z,f(z)上的导数(其中,z=sin²x)。
你那个理解是不对的。
[f(sin²x)]'=df(sin²x)/dx=df(sin²x)/d(sin²x)*d(sin²x)/dx
=f'(sin²x)*d(sin²x)/d(sinx)*d(sinx)/dx
=f'(sin²x)*2sinx*cosx
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询