如图,求详细过程,谢谢
1个回答
展开全部
∫ (0->1/2) √[(1-2x)/(1+2x)] dx
∫ (0->1/2) (1-2x)/√(1-4x^2) dx
let
x = (1/2)sinu
dx=(1/2)cosu du
x=0, u=0
x=1/2, u=π/2
∫ (0->1/2) (1-2x)/√(1-4x^2) dx
= (1/2)∫ (0->π/2) (1-sinu) du
= (1/2)[u+cosu]|(0->π/2)
=(1/2)( π/2 -1)
=π/4 - 1/2
∫ (0->1/2) (1-2x)/√(1-4x^2) dx
let
x = (1/2)sinu
dx=(1/2)cosu du
x=0, u=0
x=1/2, u=π/2
∫ (0->1/2) (1-2x)/√(1-4x^2) dx
= (1/2)∫ (0->π/2) (1-sinu) du
= (1/2)[u+cosu]|(0->π/2)
=(1/2)( π/2 -1)
=π/4 - 1/2
追问
书上的答案是π/4-1/2
追答
已经改了
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询