微积分求助……
2个回答
2017-04-04 · 知道合伙人教育行家
关注
展开全部
设x-1=sect,则dx=sect·tant·dt
x=3时,t=π/3
x→+∞时,t→π/2
所以,
原式=∫[π/3~π/2]1/[(sect)^4·tant]·sect·tant·dt
=∫[π/3~π/2]1/sec³t·dt
=∫[π/3~π/2]cos³t·dt
=∫[π/3~π/2]cos²t·costdt
=∫[π/3~π/2](1-sin²t)·d(sint)
=(sint-1/3·sin³t) |[π/3~π/2]
=2/3-3/8·√3
x=3时,t=π/3
x→+∞时,t→π/2
所以,
原式=∫[π/3~π/2]1/[(sect)^4·tant]·sect·tant·dt
=∫[π/3~π/2]1/sec³t·dt
=∫[π/3~π/2]cos³t·dt
=∫[π/3~π/2]cos²t·costdt
=∫[π/3~π/2](1-sin²t)·d(sint)
=(sint-1/3·sin³t) |[π/3~π/2]
=2/3-3/8·√3
本回答被提问者和网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询