svr算法和svm算法哪个好
2个回答
展开全部
1、支持向量机( SVM )是一种比较好的实现了结构风险最小化思想的方法。它的机器学习策略是结构风险最小化原则
为了最小化期望风险,应同时最小化经验风险和置信范围)
支持向量机方法的基本思想:
( 1
)它是专门针对有限样本情况的学习机器,实现的是结构风险最小化:在对给定的数据逼近的精度与逼近函数的复杂性之间寻求折衷,以期获得最好的推广能力;
( 2
)它最终解决的是一个凸二次规划问题,从理论上说,得到的将是全局最优解,解决了在神经网络方法中无法避免的局部极值问题;
( 3
)它将实际问题通过非线性变换转换到高维的特征空间,在高维空间中构造线性决策函数来实现原空间中的非线性决策函数,巧妙地解决了维数问题,并保证了有较好的推广能力,而且算法复杂度与样本维数无关。
目前, SVM
算法在模式识别、回归估计、概率密度函数估计等方面都有应用,且算法在效率与精度上已经超过传统的学习算法或与之不相上下。
对于经验风险R,可以采用不同的损失函数来描述,如e不敏感函数、Quadratic函数、Huber函数、Laplace函数等。
核函数一般有多项式核、高斯径向基核、指数径向基核、多隐层感知核、傅立叶级数核、样条核、 B
样条核等,虽然一些实验表明在分类中不同的核函数能够产生几乎同样的结果,但在回归中,不同的核函数往往对拟合结果有较大的影响
2、支持向量回归算法(svr)主要是通过升维后,在高维空间中构造线性决策函数来实现线性回归,用e不敏感函数时,其基础主要是 e
不敏感函数和核函数算法。
若将拟合的数学模型表达多维空间的某一曲线,则根据e 不敏感函数所得的结果,就是包括该曲线和训练点的“
e管道”。在所有样本点中,只有分布在“管壁”上的那一部分样本点决定管道的位置。这一部分训练样本称为“支持向量”。为适应训练样本集的非线性,传统的拟合方法通常是在线性方程后面加高阶项。此法诚然有效,但由此增加的可调参数未免增加了过拟合的风险。支持向量回归算法采用核函数解决这一矛盾。用核函数代替线性方程中的线性项可以使原来的线性算法“非线性化”,即能做非线性回归。与此同时,引进核函数达到了“升维”的目的,而增加的可调参数是过拟合依然能控制。
为了最小化期望风险,应同时最小化经验风险和置信范围)
支持向量机方法的基本思想:
( 1
)它是专门针对有限样本情况的学习机器,实现的是结构风险最小化:在对给定的数据逼近的精度与逼近函数的复杂性之间寻求折衷,以期获得最好的推广能力;
( 2
)它最终解决的是一个凸二次规划问题,从理论上说,得到的将是全局最优解,解决了在神经网络方法中无法避免的局部极值问题;
( 3
)它将实际问题通过非线性变换转换到高维的特征空间,在高维空间中构造线性决策函数来实现原空间中的非线性决策函数,巧妙地解决了维数问题,并保证了有较好的推广能力,而且算法复杂度与样本维数无关。
目前, SVM
算法在模式识别、回归估计、概率密度函数估计等方面都有应用,且算法在效率与精度上已经超过传统的学习算法或与之不相上下。
对于经验风险R,可以采用不同的损失函数来描述,如e不敏感函数、Quadratic函数、Huber函数、Laplace函数等。
核函数一般有多项式核、高斯径向基核、指数径向基核、多隐层感知核、傅立叶级数核、样条核、 B
样条核等,虽然一些实验表明在分类中不同的核函数能够产生几乎同样的结果,但在回归中,不同的核函数往往对拟合结果有较大的影响
2、支持向量回归算法(svr)主要是通过升维后,在高维空间中构造线性决策函数来实现线性回归,用e不敏感函数时,其基础主要是 e
不敏感函数和核函数算法。
若将拟合的数学模型表达多维空间的某一曲线,则根据e 不敏感函数所得的结果,就是包括该曲线和训练点的“
e管道”。在所有样本点中,只有分布在“管壁”上的那一部分样本点决定管道的位置。这一部分训练样本称为“支持向量”。为适应训练样本集的非线性,传统的拟合方法通常是在线性方程后面加高阶项。此法诚然有效,但由此增加的可调参数未免增加了过拟合的风险。支持向量回归算法采用核函数解决这一矛盾。用核函数代替线性方程中的线性项可以使原来的线性算法“非线性化”,即能做非线性回归。与此同时,引进核函数达到了“升维”的目的,而增加的可调参数是过拟合依然能控制。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询