高等数学求极限中的解n 20

 我来答
匿名用户
2017-10-13
展开全部
当a=0时
原式=1+1+1+……+1(共有n+1个1)=n+1
当a=1时
原式
=1+(1+1)+(1+1+1)+……+(1+1+……+1)
=1+2+3+……+(n+1)
=(n+1+1)(n+1)/2
=(n+2)(n+1)/2
当a≠0,1
因为1+a+a^2+……+a^n=1×[1-a^(n+1)]/(1-a)=1/(1-a)-a^(n+1)/(1-a)
原式
=1+(1+a)+……(1+a+a^2+……+a^n)
=1/(1-a)-a^(0+1)/(1-a)+1/(1-a)-a^(1+1)/(1-a)+……+1/(1-a)-a^(n+1)/(1-a)
=1/(1-a)×(n+1)-[a/(1-a)+a^2/(1-a)+……a^(n+1)/(1-a)]
=(n+1)/(1-a)-(a+a^2+……+a^(n+1))/(1-a)
=(n+1)/(1-a)-{a[1-a^(n+1)]}/(1-a)^2
=[(n+1)(1-a)-a+a^(n+2)]/(1-a)^2
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式