
高中数学,怎么这道题我这样做做不出来呢
1个回答
展开全部
(I)
a(n+1)= Sn + 3^n
S(n+1)-Sn =Sn + 3^n
S(n+1) -3^(n+1)= 2( Sn - 3^n)
=> {Sn-3^n} 是等比数列, q=2
(II)
Sn-3^n = 2^(n-1) .(S1 -3)
Sn-3^n = 2^(n-1) .(a1 -3)
Sn =3^n + 2^(n-1) .(a1 -3)
for n>=2
an = Sn - S(n-1)
=3^n + 2^(n-1) .(a1 -3) - 3^(n-1) + 2^(n-2) .(a1 -3)
= 2.3^(n-1) + (a1-3).2^(n-2)
n=2
a2 -a1 =6 + (a1-3) -a1 =3 >0
for n>=3
an - a(n-1) >0
2.3^(n-1) + (a1-3).2^(n-2) - 2.3^(n-2) + (a1-3).2^(n-3) >0
4.3^(n-2) +(a1-3).2^(n-3) >0
=> a1< 3
a(n+1)= Sn + 3^n
S(n+1)-Sn =Sn + 3^n
S(n+1) -3^(n+1)= 2( Sn - 3^n)
=> {Sn-3^n} 是等比数列, q=2
(II)
Sn-3^n = 2^(n-1) .(S1 -3)
Sn-3^n = 2^(n-1) .(a1 -3)
Sn =3^n + 2^(n-1) .(a1 -3)
for n>=2
an = Sn - S(n-1)
=3^n + 2^(n-1) .(a1 -3) - 3^(n-1) + 2^(n-2) .(a1 -3)
= 2.3^(n-1) + (a1-3).2^(n-2)
n=2
a2 -a1 =6 + (a1-3) -a1 =3 >0
for n>=3
an - a(n-1) >0
2.3^(n-1) + (a1-3).2^(n-2) - 2.3^(n-2) + (a1-3).2^(n-3) >0
4.3^(n-2) +(a1-3).2^(n-3) >0
=> a1< 3
本回答被提问者和网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询