高数求质心问题
- 你的回答被采纳后将获得:
- 系统奖励15(财富值+成长值)+难题奖励20(财富值+成长值)
1个回答
展开全部
设质心为(x0,y0,z0)
M=∫∫∫dm=∫∫∫μdV=∫<1,2>∫∫π(x²+y²)dz=∫<1,2>πzdz=3π/2
根据对称性可知。x0=∫∫∫xdm/M=0 y0=∫∫∫ydm/M=0
z0= ∫∫∫zdm/M=∫<1,2>πz²dz/M=(7π/3)/(3π/2)=14/9
质心坐标为(0,0,14/9)
M=∫∫∫dm=∫∫∫μdV=∫<1,2>∫∫π(x²+y²)dz=∫<1,2>πzdz=3π/2
根据对称性可知。x0=∫∫∫xdm/M=0 y0=∫∫∫ydm/M=0
z0= ∫∫∫zdm/M=∫<1,2>πz²dz/M=(7π/3)/(3π/2)=14/9
质心坐标为(0,0,14/9)
更多追问追答
追问
您能看一下 我是积分区域错误了吗?
追答
我看不懂你的ρ定义以及它的积分区域[1,√2]设定,可能是这里有问题。
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |