求解:用第二换元积分法求第3、4题! 3、∫x(1-x)^4 dx。 4、∫x/1 √x dx
1个回答
展开全部
第三题:令u=1-x,∫x(1-x)^4dx=∫(1-u)u^4d(1-u)=-∫u^4-u^5du=u^6/6-u^5/5=(1-x)^6/6-(1-x)^5/5。
第四题:令√x=u,得:x=u^2,∴dx=2udu.∴原式=∫u^2/(1+u)(2u)du=-2∫u^3/(u+1)d(u+1).
再令u+1=v,得:u=v-1,∴u^3=(v-1)^3=v^3-3v^2+3v-1.∴原式=-2∫(v^3-3v^2+3v-1)/vdv=-2∫v^2dv+6∫vdv-6∫dv+2∫(1/v)dv=-(2/3)v^3+3v^2-6v+2ln|v|+C=-(2/3)(u+1)^3+3(u+1)^2-6(u+1)+2ln|u+1|+C=-(2/3)(u^3+3u^2+3u+1)+3(u^2+2u+1)-6u-6+2ln|u+1|+C=-2/3u^3+u^2-2u+2ln|u+1|+C=-2/3x√x+x-2√x+2ln|√x+1|+C
算对了麻烦采纳一下
第四题:令√x=u,得:x=u^2,∴dx=2udu.∴原式=∫u^2/(1+u)(2u)du=-2∫u^3/(u+1)d(u+1).
再令u+1=v,得:u=v-1,∴u^3=(v-1)^3=v^3-3v^2+3v-1.∴原式=-2∫(v^3-3v^2+3v-1)/vdv=-2∫v^2dv+6∫vdv-6∫dv+2∫(1/v)dv=-(2/3)v^3+3v^2-6v+2ln|v|+C=-(2/3)(u+1)^3+3(u+1)^2-6(u+1)+2ln|u+1|+C=-(2/3)(u^3+3u^2+3u+1)+3(u^2+2u+1)-6u-6+2ln|u+1|+C=-2/3u^3+u^2-2u+2ln|u+1|+C=-2/3x√x+x-2√x+2ln|√x+1|+C
算对了麻烦采纳一下
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询