直角三角形的斜边长度怎么算?
2023-08-25 广告
c(斜边)=√(a²+b²)。(a,b为两直角边)
解答过程如下:
(1)在直角三角形中满足勾股定理—在平面上的一个直角三角形中,两个直角边边长的平方加起来等于斜边长的平方。数学表达式:a²+b²=c²
(2)a²+b²=c²求c,因为c是一条边,所以就是求大于0的一个根。即c=√(a²+b²)。
扩展资料:
等腰直角三角形是一种特殊的三角形,具有所有三角形的性质:具有稳定性、内角和为180°。两直角边相等,两锐角为45°,斜边上中线、角平分线、垂线三线合一,等腰直角三角形斜边上的高为此三角形外接圆的半径R。
正弦定理,在△ABC中,有a:sinA=c:sinC
将a与c的关系及∠A的度数代入之后化简得sinC=1
又∵0<∠C<180°
∴∠C=90°
等腰直角三角形的边角之间的关系 :
(1)三角形三内角和等于180°;
(2)三角形的一个外角等于和它不相邻的两个内角之和;
(3)三角形的一外角大于任何一个和它不相邻的内角;
(4)三角形两边之和大于第三边,两边之差小于第三边;
(5)在同一个三角形内,大边对大角,大角对大边。
参考资料来源:百度百科——直角三角形
1、可以利用勾股定理,即在平面上的一个直角三角形中,两个直角边边长的平方加起来等于斜边长的平方。如果设直角三角形的两条直角边长度分别是a和b ,斜边长度是c ,那么可以用数学语言表达:
2、可以用余弦定理,即于任意三角形,任何一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦的积的两倍:
综上所述可知:根据不同的条件运用勾股定理或者余弦定理,在条件足够的情形下,就可以求出直角三角形斜边。
扩展资料:
直角三角形中余弦定理的相关解释:
在△ABC中,BC=a,AC=b,AB=c,作AD⊥BC于D,则AD=c*sinB,DC=a-BD=a-c*cosB,
在Rt△ACD中,
b²=AD²+DC²=(c*sinB)²+(a-c*cosB)²
=c²sin²B+a²-2ac*cosB+c²cos²B
=c²(sin²B+cos²B)+a²-2ac*cosB
=c²+a²-2ac*cosB
参考资料来源:百度百科-勾股定理
参考资料来源:百度百科-余弦定理