数形结合思想在初中数学教学中的妙用?
2018-01-14 · 为梦想出发,留学不留憾!
芥末留学
芥末留学是中国领先的互联网留学服务提供商,业务覆盖日本、英国、澳洲、美国等数十个国家,为您提供方便、快捷、专业、高效在线留学申请及留学后服务,一站式解决您留学过程中遇到的各种问题。
向TA提问
关注
展开全部
一、以数化形思想在初中数学教学中的妙用
以数化形思想作为数形结合思想中的重要思想之一,在初中数学学习中,由于很多数量关系具有较强的抽象性,使得学生在理解和掌握过程中的难度很大,但是图形又具有直观形象的特点,能有效的表现抽象的思维形象。数与形之间本身就是一种对应,此时就应将与“数”对应的形式即“形”找出来,从而有效的利用图形达到解决数量问题的目的。在实际应用过程中,主要是结合已知的问题情境,找出数和形之间的关系,并将数量问题转换成图形行为,再对图形进行分析,达到解决数量问题的目的。
二、以形变数思想在初中数学教学中的妙用
以形变数思想作为数形结合思想中的重要思想之一,在初中数学学习中,虽然图像能直观形象的展示抽象的思维,然而在定量时就需要利用代数计算,尤其是复杂的图形,对其直接观察难以得出规律,同样,形与数之间本身就是一种对应,此时就应将与“形”对应的形式即“数”找出来,从而有效的利用图形的特点找出图形中隐藏的条件,实现图形数量化,达到利用数量解决图形方面的问题。以《锐角三角函数》教学为例,由于其作为整个图形与几何的重要教学内容,其主要学习三角函数感念以及如何解直角三角形,由于解直角三角形必须利用到锐角三角函数,而且在生活实际中应用的情况较为广泛。教材中就是以比萨斜塔为例,将直角三角形的内容引出,结合已知的条件对直角三角形进行求解。所以为了更好地学习三角函数概念,就应结合实际针对性的进行概念教学。
三、形数互变思想在初中数学教学中的应用
形数互变思想在初中数学教学中的应用,主要是将数化形、以形变数在初中数学教学中的综合应用。以勾股定理教学为例,就需要采取形数互变思想进行教学。
以数化形思想作为数形结合思想中的重要思想之一,在初中数学学习中,由于很多数量关系具有较强的抽象性,使得学生在理解和掌握过程中的难度很大,但是图形又具有直观形象的特点,能有效的表现抽象的思维形象。数与形之间本身就是一种对应,此时就应将与“数”对应的形式即“形”找出来,从而有效的利用图形达到解决数量问题的目的。在实际应用过程中,主要是结合已知的问题情境,找出数和形之间的关系,并将数量问题转换成图形行为,再对图形进行分析,达到解决数量问题的目的。
二、以形变数思想在初中数学教学中的妙用
以形变数思想作为数形结合思想中的重要思想之一,在初中数学学习中,虽然图像能直观形象的展示抽象的思维,然而在定量时就需要利用代数计算,尤其是复杂的图形,对其直接观察难以得出规律,同样,形与数之间本身就是一种对应,此时就应将与“形”对应的形式即“数”找出来,从而有效的利用图形的特点找出图形中隐藏的条件,实现图形数量化,达到利用数量解决图形方面的问题。以《锐角三角函数》教学为例,由于其作为整个图形与几何的重要教学内容,其主要学习三角函数感念以及如何解直角三角形,由于解直角三角形必须利用到锐角三角函数,而且在生活实际中应用的情况较为广泛。教材中就是以比萨斜塔为例,将直角三角形的内容引出,结合已知的条件对直角三角形进行求解。所以为了更好地学习三角函数概念,就应结合实际针对性的进行概念教学。
三、形数互变思想在初中数学教学中的应用
形数互变思想在初中数学教学中的应用,主要是将数化形、以形变数在初中数学教学中的综合应用。以勾股定理教学为例,就需要采取形数互变思想进行教学。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询