(cosx)^4不定积分怎么算?

 我来答
阿肆聊生活
高粉答主

2021-10-18 · 每个回答都超有意思的
知道大有可为答主
回答量:1.1万
采纳率:100%
帮助的人:187万
展开全部

具体步骤如下:

(cosx)^4

=cos⁴x

=(cos²x)²

=[(1+cos2x)/2]²

=(1/4)(1+2cos2x+cos²2x)

=(1/4)+(1/2)cos2x+(1/8)(1+cos4x)

=(3/8)+(1/2)cos2x+(1/8)cos4x∫cos⁴xdx

=∫[(3/8)+(1/2)cos2x+(1/8)cos4x]dx

=(3/8)x+(1/4)sin2x+(1/32)sin4x+C

不可积函数

虽然很多函数都可通过如上的各种手段计算其不定积分,但这并不意味着所有的函数的原函数都可以表示成初等函数的有限次复合。

原函数不可以表示成初等函数的有限次复合的函数称为不可积函数。利用微分代数中的微分Galois理论可以证明,如 ,xx ,sinx/x这样的函数是不可积的。




第六人格传说
2017-12-10 · 专注游戏解说,分享游戏新世界。
第六人格传说
采纳数:65 获赞数:6274

向TA提问 私信TA
展开全部

具体步骤如下:

(cosx)^4
=cos⁴x
=(cos²x)²
=[(1+cos2x)/2]²
=(1/4)(1+2cos2x+cos²2x)
=(1/4)+(1/2)cos2x+(1/8)(1+cos4x)
=(3/8)+(1/2)cos2x+(1/8)cos4x∫cos⁴xdx
=∫[(3/8)+(1/2)cos2x+(1/8)cos4x]dx
=(3/8)x+(1/4)sin2x+(1/32)sin4x+C

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式