高等数学,微积分,幂级数求和函数
2个回答
展开全部
S(x) = 1·2x + 2·3x^2 + 3·4x^3+ ......
= ∑<n=1,∞>n(n+1)x^n = [∑<n=1,∞>nx^(n+1)]'
= [∑<n=1,∞>(n+2)x^(n+1) - ∑<n=1,∞>2x^(n+1)]'
= {[∑<n=1,∞>x^(n+2)]' - 2x^2/(1-x)}' ( |x| < 1 )
= {[x^3/(1-x)]' - 2x^2/(1-x)}' = {[-x^2-x-1+1/(1-x)]' + 2x+2-1/(1-x)}'
= {-2x -1 + 1/(1-x)^2 + 2x + 2 - 1/(1-x)}'
= [1 + 1/(1-x)^2 - 1/(1-x)]' = 2/(1-x)^3 - 1/(1-x)^2
= (1+x)/(1-x)^3 ( |x| < 1 )
= ∑<n=1,∞>n(n+1)x^n = [∑<n=1,∞>nx^(n+1)]'
= [∑<n=1,∞>(n+2)x^(n+1) - ∑<n=1,∞>2x^(n+1)]'
= {[∑<n=1,∞>x^(n+2)]' - 2x^2/(1-x)}' ( |x| < 1 )
= {[x^3/(1-x)]' - 2x^2/(1-x)}' = {[-x^2-x-1+1/(1-x)]' + 2x+2-1/(1-x)}'
= {-2x -1 + 1/(1-x)^2 + 2x + 2 - 1/(1-x)}'
= [1 + 1/(1-x)^2 - 1/(1-x)]' = 2/(1-x)^3 - 1/(1-x)^2
= (1+x)/(1-x)^3 ( |x| < 1 )
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询