用级数求函数的高阶导数
求f(x)=arctanx的n阶导数在x=0处的值?求高阶导数是泰勒公式,或者幂级数的一个主要应用。主要是利用表达式的唯一性。一方面,由定义,f(x)=arctanx的麦...
求f(x)=arctanx的n阶导数在x=0处的值?
求高阶导数是泰勒公式,或者幂级数的一个主要应用。
主要是利用表达式的唯一性。
一方面,由定义,f(x)=arctanx 的麦克老林公式中,x^n的系数是:f(n)(0) / n!,f(n)(0)表示在x=0处的n阶导数。
另一方面,f ' (x)=1/(1+x^2)=∑(-1)^n×x^(2n),所以,f(x)=∑(-1)^n×x^(2n+1)/ (2n+1)
比较两个表达式中x^n的系数,得:
当n为偶数时,f(x)在x=0处的n阶导数是0;
当n为奇数时,设n=2m+1,f(x)在x=0处的n阶导数是:(-1)^m× (2m)!
如何比较两个式子?能给出具体过程吗要详细的,最好是手写,谢谢 展开
求高阶导数是泰勒公式,或者幂级数的一个主要应用。
主要是利用表达式的唯一性。
一方面,由定义,f(x)=arctanx 的麦克老林公式中,x^n的系数是:f(n)(0) / n!,f(n)(0)表示在x=0处的n阶导数。
另一方面,f ' (x)=1/(1+x^2)=∑(-1)^n×x^(2n),所以,f(x)=∑(-1)^n×x^(2n+1)/ (2n+1)
比较两个表达式中x^n的系数,得:
当n为偶数时,f(x)在x=0处的n阶导数是0;
当n为奇数时,设n=2m+1,f(x)在x=0处的n阶导数是:(-1)^m× (2m)!
如何比较两个式子?能给出具体过程吗要详细的,最好是手写,谢谢 展开
2020-04-16
展开全部
1.求高阶导数是泰勒公式,或者幂级数的一个主要应用。 主要是利用表达式的唯一性。
2. 一方面,由定义,f(x)=arctanx 的麦克老林公式中,x^n的系数是:f(n)(0) / n!,f(n)(0)表示在x=0处的n阶导数。 另一方面,f ' (x)=1/(1+x^2)=∑(-1)^n×x^(2n),
3.所以,f(x)=∑(-1)^n×x^(2n+1)/ (2n+1) 比较两个表达式中x^n的系数,得: 当n为偶数时,f(x)在x=0处的n阶导数是0; 当n为奇数时,设n=2m+1,f(x)在x=0处的n阶导数是:(-1)^m× (2m)! 比较两个式子,就可以求出 f(x)=arctanx的n阶导数在x=0处的值。
4.具体的用级数求函数的高阶导数,过程见上图。
Sievers分析仪
2024-10-13 广告
2024-10-13 广告
是的。传统上,对于符合要求的内毒素检测,最终用户必须从标准内毒素库存瓶中构建至少一式两份三点标准曲线;必须有重复的阴性控制;每个样品和PPC必须一式两份。有了Sievers Eclipse内毒素检测仪,这些步骤可以通过使用预嵌入的内毒素标准...
点击进入详情页
本回答由Sievers分析仪提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询