求解答导数问题
2个回答
展开全部
xf(x) = 2x^3 + 2∫<1, x>f(t)dt, f(1) = 2
两边对 x 求导,得 f(x) + xf'(x) = 6x^2+ 2f(x)
xf'(x) - f(x) = 6x^2
x ≠ 0 时, f'(x) - f(x)/x = 6x 为一阶线性微分方程,通解是
f(x) = e^(∫dx/x)[∫6xe^(-∫dx/x)dx + C]
= x(∫6dx + C) = 6x^2 + Cx
f(1) = 2 代入得 2 = 6+C, C = -4 , f(x) = 6x^2-4x
两边对 x 求导,得 f(x) + xf'(x) = 6x^2+ 2f(x)
xf'(x) - f(x) = 6x^2
x ≠ 0 时, f'(x) - f(x)/x = 6x 为一阶线性微分方程,通解是
f(x) = e^(∫dx/x)[∫6xe^(-∫dx/x)dx + C]
= x(∫6dx + C) = 6x^2 + Cx
f(1) = 2 代入得 2 = 6+C, C = -4 , f(x) = 6x^2-4x
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询