展开全部
(1)
lim(x->1+) [ 1- 2^(1/(x-1) ]/[ 1+2^(1/(x-1) ]
分子分母同时除以 2^(1/(x-1)
=lim(x->1+) [ 1/2^(1/(x-1) - 1 ]/[ 1/2^(1/(x-1) +1 ]
=(0-1)/(0+1)
=-1
lim(x->1-) [ 1- 2^(1/(x-1) ]/[ 1+2^(1/(x-1) ]
=(1-0)/(1+0)
=1
=>lim(x->1) [ 1- 2^(1/(x-1) ]/[ 1+2^(1/(x-1) ] 不存在
(2)
lim(x->0+)[ 2+e^(1/x) ]/ [1+ e^(4/x) ]
分子分母同时除以 e^(4/x)
=lim(x->0+)[ 2/e^(4/x) +1/e^(3/x) ]/ [1/e^(4/x)+ 1 ]
=(0+0)/(1+0)
=0
lim(x->1+) [ 1- 2^(1/(x-1) ]/[ 1+2^(1/(x-1) ]
分子分母同时除以 2^(1/(x-1)
=lim(x->1+) [ 1/2^(1/(x-1) - 1 ]/[ 1/2^(1/(x-1) +1 ]
=(0-1)/(0+1)
=-1
lim(x->1-) [ 1- 2^(1/(x-1) ]/[ 1+2^(1/(x-1) ]
=(1-0)/(1+0)
=1
=>lim(x->1) [ 1- 2^(1/(x-1) ]/[ 1+2^(1/(x-1) ] 不存在
(2)
lim(x->0+)[ 2+e^(1/x) ]/ [1+ e^(4/x) ]
分子分母同时除以 e^(4/x)
=lim(x->0+)[ 2/e^(4/x) +1/e^(3/x) ]/ [1/e^(4/x)+ 1 ]
=(0+0)/(1+0)
=0
追问
分子分母为什么要同时除以 2^(1/(x-1)
追答
因为
lim(x->1+) [ 1/2^(1/(x-1)) 】 =0
本回答被提问者和网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询