小军说,今天我读书从第10页读到16页明天该读第17页了他今天读了几页!怎么列算式?
今天我从第10页读到第14页,明天该该15页了。他今天读了5页。
根据题意列算式:
15-10=5。
所以今天读了5页。
减法相关性质:
1、反交换率:减法是反交换的,如果a和b是任意两个数字,那么
(a-b)=-(b-a)。
2、反结合律:减法是反结合的,当试图重新定义减法时,那么
a-b-c=a-(b+c)。
减法遵循几个重要的模式。
它是反交换的,意味着改变顺序改变了答案的符号。它不具有结合性,也就是说,当一个减数超过两个数字时,减法的顺序是重要的。减法0不改变一个数字。
减法也遵循与加法和乘法等相关运算的可预测规则。所有这些规则都可以被证明,从整数的减法开始,并通过真实的数字和其他东西来概括。继续这些模式的一般二元运算在抽象代数中学习。
他今天读了7页。
分析过程如下:
(1)列举法:一本书,强强今天从10页读到16页,表示从第十页开始看,已经把第十六页看完了。从10到16的自然数有:10,11,12,13,14,15,16。一个个数,共有7页。
(2)算式法:16-10+1=7。
扩展资料:
整数的加减法运算法则:
(1)相同数位对齐;
(2)从个位算起;
(3)加法中满几十就向高一位进几;减法中不够减时,就从高一位退1当10和本数位相加后再减。
实数的加法法则:
(1)同号两数相加,取与加数相同的符号,并把绝对值相加。
(2)异号两数相加,取绝对值最大的加数的符号,并用较大的绝对值减去较小的绝对值。
减法运算性质
(1)一个数减去两个数的和,等于从这个数中依次减去和里的每一个加数。
例如:134-(34+63)=134-34-63=37。
(2)一个数减去两个数的差,等于这个数先减去差里的被减数,再加上减数。
例如:100一(32—15)=100—32+15=68+15=83。