高中解析几何,急!

若圆x^2+y^2-4x-4y-10=0上至少有三个不同点到直线l:ax+by=0的距离为2√2,问:直线l的斜率的取值区间为?... 若圆x^2+y^2-4x-4y-10=0上至少有三个不同点到直线l:ax+by=0的距离为2√2,问:直线l的斜率的取值区间为? 展开
o黑射会o依儿
2011-01-11 · 超过13用户采纳过TA的回答
知道答主
回答量:24
采纳率:0%
帮助的人:36.4万
展开全部

将圆的方程x2+y2-4x-4y-10=0化成标准方程为(x-2)2+(y-2)2=18, 

∴圆心为P(2,2),半径为3 

如图所示,设l1与l2为过原点的两条直线,且圆心P到l1及l2的距离均为 ,由于圆的半径为3 ,则与l1平等且与圆相切的直线同圆的切点就是一个到直线l1的距离为2 的点,另一侧则有两个满足条件的点,同理可以知道l2也为一条满足条件的临界直线,此时,倾斜角范围为[π/12,5π/12]

所以、、、斜率=tan倾斜角、、、、剩下自己算吧、、、

zqs626290
2011-01-11 · TA获得超过3.1万个赞
知道大有可为答主
回答量:1.6万
采纳率:66%
帮助的人:5845万
展开全部
解:易知,圆心(2,2),半径r=3√2,由题设及数形结合可知,圆心到直线ax+by=0的距离不大于√2.即有|2a+2b|/√(a²+b²)≤√2.整理可得a²+4ab+b²≤0.易知,b≠0,否则直线斜率k不存在,∴k=-a/b.===>a=-kb.代入前面不等式得b²(k²-4k+1)≤0.===>(k-2)²≤3.===>2-√3≤k≤2+√3.即直线斜率的取值范围是[2-√3,2+√3].
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式