一个大正方形分成16个小正方形,按分格线分成相等的两部分有多少种方法
1个回答
展开全部
首先,不管怎么分,只要是完全相同的两部分,那么必然会进过正方形的中心点;而且一旦有一般的路径(分割线)确定了,另一半也是确定的(因为要保证对称)。所以要保证对称,意味着与中心点接触的两部分分别属于两个不同的部分,而且要对称,我们用1,表示左上角的那一半,0表示右下角的那一半(这样整个正方形纸片被1和0分为两部分,总共16个格子,分为8个1,8个0),如下图,X代表不确定图1
下面要做的,只需要用1或0代替X,使得所有的1连成一片,所有的0连成一片(即每个0的上下左右至少有一个是0,且每个1的上下左右至少有一个1),很明显,最下面两种情况是没有办法连的,排除。再看图1中第一行第一个图,为了保证中间两个1能跟1相连,只需要满足从左到右,从上到下的顺序填1,共有6种情况,
图2
看图1中第二行第一个图,刚好是第一行第一个图的转置(行列颠倒),所以也是6种情况;
然后再看图1中第一行第二个图,要保证1不间断,不仅要保证从上到下,从左到右的顺序,而且下面要5个1才能相连,上面要2个1才能相连(两者只要一个相连即可),所以有5种情况(从左上角的1开始,往下走4个1,往右走1个1的方法不能相连,其他组合都相连),如下图:图3同样的,图1中第二行第二个图与第一行第二个图是行列颠倒的关系,所以也是5种;故总共6+6+5+5=22种可能,沿着这些图中0和1的边界剪开,就是相同的两部分;所以有22种分法
下面要做的,只需要用1或0代替X,使得所有的1连成一片,所有的0连成一片(即每个0的上下左右至少有一个是0,且每个1的上下左右至少有一个1),很明显,最下面两种情况是没有办法连的,排除。再看图1中第一行第一个图,为了保证中间两个1能跟1相连,只需要满足从左到右,从上到下的顺序填1,共有6种情况,
图2
看图1中第二行第一个图,刚好是第一行第一个图的转置(行列颠倒),所以也是6种情况;
然后再看图1中第一行第二个图,要保证1不间断,不仅要保证从上到下,从左到右的顺序,而且下面要5个1才能相连,上面要2个1才能相连(两者只要一个相连即可),所以有5种情况(从左上角的1开始,往下走4个1,往右走1个1的方法不能相连,其他组合都相连),如下图:图3同样的,图1中第二行第二个图与第一行第二个图是行列颠倒的关系,所以也是5种;故总共6+6+5+5=22种可能,沿着这些图中0和1的边界剪开,就是相同的两部分;所以有22种分法
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询