关于矩阵的计算。

 我来答
壬素枝易书
2020-04-09 · TA获得超过3.6万个赞
知道大有可为答主
回答量:1.2万
采纳率:29%
帮助的人:999万
展开全部
这么证明看看能否接受.
证明:
由已知A≠0,
可设
aij≠0.
因为
A^T=A*
所以
AA^T=AA*=|A|E.
所以等式两边第i行第i列元素相等
即有
ai1^2+ai2^2+...+aij^2+...+ain^2
=
|A|.
再由
aij≠0,
所以有
|A|≠0.
(*)
所以A可逆.
(*)注:
这里需要A是实矩阵,
即A中元素都是实数.
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
检桂花甄婉
2020-03-02 · TA获得超过3.6万个赞
知道大有可为答主
回答量:1.2万
采纳率:31%
帮助的人:879万
展开全部
这个没有什么特别简便的方法只能按照做基本的行列式展开的方法展开,例如你这个式子展开为:

(-1-λ)*(3-λ)*(2-λ)+
1*0*1
+
0*
(-4)
*
0
-
0*(3-λ)*1-
1*(-4)*(2-λ)
-
(-1-λ)*0*0=(-1-λ)*(3-λ)*(2-λ)
+
1*(-4)*(2-λ)

=(-3-2λ+λ^2)
-
1*(-4)*(2-λ)
=
(1-2λ+λ^2)*(2-λ)=(2-λ)(1-λ)²

1阶到3阶的行列式的展开式都可以直接看出来,4阶以上的需要入代公式才能得到展开式,计算比较繁
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式