高中极限与导数
展开全部
求导数的方法 (1)求函数y=f(x)在x0处导数的步骤:
①
求函数的增量δy=f(x0+δx)-f(x0)
②
求平均变化率
③
取极限,得导数。
(2)几种常见函数的导数公式:
①
c'=0(c为常数函数);
②
(x^n)'=
nx^(n-1)
(n∈q);
③
(sinx)'
=
cosx;
④
(cosx)'
=
-
sinx;
⑤
(e^x)'
=
e^x;
⑥
(a^x)'
=
a^xlna
(ln为自然对数)
⑦
(inx)'
=
1/x(ln为自然对数)
⑧
(logax)'
=(xlna)^(-1),(a>0且a不等于1)
补充一下。上面的公式是不可以代常数进去的,只能代函数,新学导数的人往往忽略这一点,造成歧义,要多加注意。
(3)导数的四则运算法则:
①(u±v)'=u'±v'
②(uv)'=u'v+uv'
③(u/v)'=(u'v-uv')/
v^2
(4)复合函数的导数
复合函数对自变量的导数,等于已知函数对中间变量的导数,乘以中间变量对自变量的导数--称为链式法则。
导数是微积分的一个重要的支柱。牛顿及莱布尼茨对此做出了卓越的贡献!
①
求函数的增量δy=f(x0+δx)-f(x0)
②
求平均变化率
③
取极限,得导数。
(2)几种常见函数的导数公式:
①
c'=0(c为常数函数);
②
(x^n)'=
nx^(n-1)
(n∈q);
③
(sinx)'
=
cosx;
④
(cosx)'
=
-
sinx;
⑤
(e^x)'
=
e^x;
⑥
(a^x)'
=
a^xlna
(ln为自然对数)
⑦
(inx)'
=
1/x(ln为自然对数)
⑧
(logax)'
=(xlna)^(-1),(a>0且a不等于1)
补充一下。上面的公式是不可以代常数进去的,只能代函数,新学导数的人往往忽略这一点,造成歧义,要多加注意。
(3)导数的四则运算法则:
①(u±v)'=u'±v'
②(uv)'=u'v+uv'
③(u/v)'=(u'v-uv')/
v^2
(4)复合函数的导数
复合函数对自变量的导数,等于已知函数对中间变量的导数,乘以中间变量对自变量的导数--称为链式法则。
导数是微积分的一个重要的支柱。牛顿及莱布尼茨对此做出了卓越的贡献!
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询