不定积分难题 被积函数是 分子:(x+lnx)^2 分母是1+lnx 积分变量是x,
展开全部
以下过程我将会说英文,高中生应该具备理解英文的能力噢。
∫lnx/(x²+1)^(3/2)
dx
=
∫lnx
d[∫dx/(x²+1)^(3/2)]
=
∫lnx
d[x/√(x²+1)],integration
by
parts,1st
step
=
(xlnx)/√(x²+1)
-
∫x/√(x²+1)
dlnx,integration
by
parts,2nd
step
=
...
-
∫x/√(x²+1)
*
(1/x)
dx
=
...
-
∫dx/√(x²+1)
for
the
term
∫dx/√(x²+1),let
x=tanθ
=>
dx=sec²θ
dθ,sinθ=x/√(x²+1),cosθ=1/√(x²+1)
=
...
-
∫(sec²θ
dθ)/(secθ)
=
...
-
∫secθ
dθ
=
...
-
ln|secθ+tanθ|
+
c
=
(xlnx)/√(x²+1)
-
ln|x+√(x²+1)|
+
c
∫lnx/(x²+1)^(3/2)
dx
=
∫lnx
d[∫dx/(x²+1)^(3/2)]
=
∫lnx
d[x/√(x²+1)],integration
by
parts,1st
step
=
(xlnx)/√(x²+1)
-
∫x/√(x²+1)
dlnx,integration
by
parts,2nd
step
=
...
-
∫x/√(x²+1)
*
(1/x)
dx
=
...
-
∫dx/√(x²+1)
for
the
term
∫dx/√(x²+1),let
x=tanθ
=>
dx=sec²θ
dθ,sinθ=x/√(x²+1),cosθ=1/√(x²+1)
=
...
-
∫(sec²θ
dθ)/(secθ)
=
...
-
∫secθ
dθ
=
...
-
ln|secθ+tanθ|
+
c
=
(xlnx)/√(x²+1)
-
ln|x+√(x²+1)|
+
c
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询