求证矩形四个内角的角平分线围成的图形是正方形
2个回答
展开全部
从内角平分线分出的角为45度,证明内角平分线围成的四边形的内角为90度(三角形内角和\对顶角相等)
由和矩形一条边上的两个角的内角平分线与这条边夹出的三角形是等腰直角三角形证其两条直角边相等,再利用此结论证明分别由这两条边\这两条边所在的角分线的另一段\矩形的一组对边夹出的两个三角形全等,得出内角平分线围成的四边形的一组临边相等
证明四个内角平分线围成的四边形是正方形(四个内角均为90度且有一组临边相等的四边形是正方形)
由和矩形一条边上的两个角的内角平分线与这条边夹出的三角形是等腰直角三角形证其两条直角边相等,再利用此结论证明分别由这两条边\这两条边所在的角分线的另一段\矩形的一组对边夹出的两个三角形全等,得出内角平分线围成的四边形的一组临边相等
证明四个内角平分线围成的四边形是正方形(四个内角均为90度且有一组临边相等的四边形是正方形)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询