抛物线C1:y=a(x-t-1)方+t方(a,t是常数,a≠0,t≠0)的顶点为A,抛物线C2:y=x方-2x+1的顶点是B

1)点A是否在抛物线C2上?说明理由;2)如果抛物线C1经过点B,求a的值。答全了追加分!!!!!!!!!!... 1)点A是否在抛物线C2上?说明理由;
2)如果抛物线C1经过点B,求a的值。
答全了追加分!!!!!!!!!!
展开
asdfdsa21222
2011-01-10 · TA获得超过170个赞
知道答主
回答量:14
采纳率:0%
帮助的人:5.1万
展开全部
(1)
由c1得 顶点A(t+1。t方)
由c2得 顶点式 y=(x-1)方
将A代入c2顶点式得 t方=(t+1-1)方
t方=t方
所以 点A在抛物线C2上

(2)
由c2得 B(1。0)
将B代入c1得 0=at方+t方
因为 t方=t方
所以 a=-1

对吧
百度网友22c9170
2013-03-14
知道答主
回答量:79
采纳率:100%
帮助的人:8.4万
展开全部
解:(1)由题意可知:A点的坐标为(t+1,t2),将A点的坐标代入抛物线y=x2-2x+1中可得:(t+1)2-2(t+1)+1=t2+2t+1-2t-2+1=t2;
因此A点在抛物线y=x2-2x+1上.

(2)①由题意可知:B点坐标为(1,0).则有:
0=a(1-t-1)2+t2,即at2+t2=0,因此a=-1.
②根据①可知:抛物线的解析式为y=-(x-t-1)2+t2;
当y=0时,-(x-t-1)2+t2=0,解得x=1或x=2t+1
设抛物线与x轴的交点为M,N,那么M点的坐标为(1,0),N点的坐标为(2t+1,0)
因此:AM2=t2+t4,AN2=t2+t4,MN2=4t2
当△AMN是直角三角形时,AM2+AN2=MN2
即(t2+t4)×2=4t2
解得t=1或t=-1
因此能构成直角三角形,此时t的值为1或-1.
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式