设函数f(x)在x0处具有二阶导数且f'(x0)=0,f''(x0)≠0,证明:f''(x0)>0时,函数f(x)在x0处取得极小值?
设函数f(x)在x_0处具有二阶导数且f'(x_0)=0,f''(x_0)≠0,证明:f''(x_0)>0时,函数f(x)在x_0处取得极小值...
设函数f(x)在x_0处具有二阶导数且f'(x_0)=0,f''(x_0)≠0,
证明:f''(x_0)>0时,函数f(x)在x_0处取得极小值 展开
证明:f''(x_0)>0时,函数f(x)在x_0处取得极小值 展开
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询