泰勒公式与泰勒中值定理的区别

 我来答
匡新兰革裳
2020-02-08 · TA获得超过3.6万个赞
知道大有可为答主
回答量:1.4万
采纳率:35%
帮助的人:914万
展开全部
总的来说,泰勒中值定理是泰勒公式的一种。
首先,要明白什么是中值定理,顾名思义,就是要对“中间”的“值”而言的,即某函数在某区间的某一点或几点上存在的性质。常表述为:“在[
,]上必存在点(或至少存在一值)m,使得……成立。”
其次,泰勒公式常见的可分为两类,区分标准主要体现在余项上。按余项分类,泰勒公式分两种:一种是带有拉格朗日型余项的,这一类的表述中有“在某区间上存在某值使得某式成立”的含义,所以属于泰勒中值定理。而另一种(带有佩亚诺余项的),最后一项仅仅用等价无穷小代替了,不能算是中值定理。
(说的比较零碎,希望能帮到你!!!)
实桂花卢璧
2019-12-31 · TA获得超过3.6万个赞
知道大有可为答主
回答量:1.4万
采纳率:28%
帮助的人:676万
展开全部
泰勒中值定理:
若函数f(x)在含有x的开区间(a,b)有直到n+1阶的导数,则当函数在此区间内时,可以展开为一个关于(x-x。)多项式和一个余项的和:
  
f(x)=f(x。)+f'(x。)(x-x。)+f''(x。)/2!*(x-x。)^2,+f'''(x。)/3!*(x-x。)^3+……+f(n)(x。)/n!*(x-x。)^n+rn(x)
  
其中rn(x)=【f(n+1)(ξ)/(n+1)!】*(x-x。)^(n+1),这里ξ在x和x。之间
麦克劳林公式
若函数f(x)在开区间(a,b)有直到n+1阶的导数,则当函数在此区间内时,可以展开为一个关于x多项式和一个余项的和:
  f(x)=f(0)+f'(0)x+【f''(0)/2!】x^2,+【f'''(0)/3!】x^3+……+【f(n)(0)/n!】x^n+rn
  其中rn=【f(n+1)(θx)/(n+1)!】x^(n+1),这里0<θ<1。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式