如图,在△ABC中∠B=∠C,k∠BAD=40°,并且∠ADE=∠AED,求∠CDE的度数

 我来答
弓素塔和雅
2020-03-06 · TA获得超过3562个赞
知道大有可为答主
回答量:3149
采纳率:27%
帮助的人:239万
展开全部
如图所示,在△ABC中,∠B=∠C,∠BAD=40°,并且∠ADE=∠AED,求∠CDE的度数.
考点:三角形的外角性质;三角形内角和定理.分析:在这里首先可以设∠DAE=x°,然后根据三角形的内角和是180°以及等腰三角形的性质用x分别表示∠C和∠AED,再根据三角形的一个外角等于和它不相邻的两个内角和进行求解.
解答:解:设∠DAE=x°,则∠BAC=40°+x°.
∵∠B=∠C,∴2∠C=180°-∠BAC
∴∠C=90°-∠BAC=90°-(40°+x°)
同理∠AED=90°-∠DAE=90°-x°
∴∠CDE=∠AED-∠C=(90°-x°)-[90°-(40°+x°)]=20°.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式