用反证法证明两直线平行,同旁内角互补
1个回答
展开全部
证明:两直线平行L1,L2,直线L3分别交L1,L2于A,B两点,同位角(锐角)∠A=∠B,
假设同旁内角∠B+∠C不等于180°,因为∠A+∠C=180°(直线L3组成的平角等于180°)
于是得到∠A不等于∠B,这与同位角相等矛盾,所以假设不成立。
故证两直线平行,同旁内角互补。
假设同旁内角∠B+∠C不等于180°,因为∠A+∠C=180°(直线L3组成的平角等于180°)
于是得到∠A不等于∠B,这与同位角相等矛盾,所以假设不成立。
故证两直线平行,同旁内角互补。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
富港检测技术(东莞)有限公司_
2024-04-02 广告
2024-04-02 广告
正弦振动多用于找出产品设计或包装设计的脆弱点。看在哪一个具体频率点响应最大(共振点);正弦振动在任一瞬间只包含一种频率的振动,而随机振动在任一瞬间包含频谱范围内的各种频率的振动。由于随机振动包含频谱内所有的频率,所以样品上的共振点会同时激发...
点击进入详情页
本回答由富港检测技术(东莞)有限公司_提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询