设f(x)在[0,1]上连续,那么f(x+n)在哪里连续

如果f(x)在[0,1]连续,那么F(x)=f(x)-f(x+1/n)在哪里连续?答案是[0,1-1/n]…但是不知道为啥要减去1/n,... 如果f(x)在[0,1]连续,那么F(x)=f(x)-f(x+1/n)在哪里连续?答案是[0,1-1/n]…但是不知道为啥要减去1/n, 展开
 我来答
奕萝祁添智
2020-08-03 · TA获得超过1253个赞
知道小有建树答主
回答量:1411
采纳率:100%
帮助的人:6.4万
展开全部
F(x)=f(x)-f(x+1/n)的定义域由
{x∈[0,1],
{x+1/n∈[0,1]确定,
即x∈[0,1-1/n].
所以答案是[0,1-1/n].
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式