原函数的概念
展开全部
原函数的定义
primitive function 已知函数f(x)是一个定义在某区间的函数,如果存在函数F(x),使得在该区间内的任一点都有 dF(x)=f(x)dx, 则在该区间内就称函数F(x)为函数f(x)的原函数。 例:sinx是cosx的原函数。 关于原函数的问题 函数f(x)满足什么条件是,才保证其原函数一定存在呢?这个问题我们以后来解决。若其存在原函数,那么原函数一共有多少个呢? 我们可以明显的看出来:若函数F(x)为函数f(x)的原函数, 即:F'(x)=f(x), 则函数族F(x)+C(C为任一个常数)中的任一个函数一定是f(x)的原函数, 故:若函数f(x)有原函数,那末其原函数为无穷多个. 如果定义在(a,b)上的函数F(x)和f(x)满足条件:对每一x∈(a,b),F′(x)=f(x)?则称F(x)为f(x)的一个原函数。例如,x3是3x2的一个原函数,易知,x3+1和x3+2也都是3x2的原函数。因此,一个函数如果有一个原函数,就有许许多多原函数,原函数概念是为解决求导和微分的逆运算而提出来的,例如:已知作直线运动的物体在任一时刻t的速度为v=v(t),要求它的运动规律 ,就是求v=v(t)的原函数。原函数的存在问题是微积分学的基本理论问题,当f(x)为连续函数时,其原函数一定存在。
primitive function 已知函数f(x)是一个定义在某区间的函数,如果存在函数F(x),使得在该区间内的任一点都有 dF(x)=f(x)dx, 则在该区间内就称函数F(x)为函数f(x)的原函数。 例:sinx是cosx的原函数。 关于原函数的问题 函数f(x)满足什么条件是,才保证其原函数一定存在呢?这个问题我们以后来解决。若其存在原函数,那么原函数一共有多少个呢? 我们可以明显的看出来:若函数F(x)为函数f(x)的原函数, 即:F'(x)=f(x), 则函数族F(x)+C(C为任一个常数)中的任一个函数一定是f(x)的原函数, 故:若函数f(x)有原函数,那末其原函数为无穷多个. 如果定义在(a,b)上的函数F(x)和f(x)满足条件:对每一x∈(a,b),F′(x)=f(x)?则称F(x)为f(x)的一个原函数。例如,x3是3x2的一个原函数,易知,x3+1和x3+2也都是3x2的原函数。因此,一个函数如果有一个原函数,就有许许多多原函数,原函数概念是为解决求导和微分的逆运算而提出来的,例如:已知作直线运动的物体在任一时刻t的速度为v=v(t),要求它的运动规律 ,就是求v=v(t)的原函数。原函数的存在问题是微积分学的基本理论问题,当f(x)为连续函数时,其原函数一定存在。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询