初二数学题(勾股定理的逆定理)

1.如图①,△ABC中,AC=2cm,∠A=30°,∠B=45°,试求AB的长2.如图②,在Rt△ABC中,∠C=90°,点D是AC的中点,DE⊥AB于E,请证明:BE的... 1.如图①,△ABC中,AC=2cm,∠A=30°,∠B=45°,试求AB的长 2.如图②,在Rt△ABC中,∠C=90°,点D是AC的中点,DE⊥AB于E,请证明:BE的平方=BC的平方+AE的平方 3.如图③,在△ABC中,∠ACB=90°,AC=BC,P是三角形内一点,且PA=3,PC=2,求∠BPC的度数 4.据我国古代《周髀算经》记载,商高曾对对周公说,将一根直尺折成一个直角,两端连结得一个直角三角形,如果勾是三,股是四,那么弦就等于五,后人概括为“勾三,股四,弦五”。 (1)观察:3、4、5、,5、12、13、,7、24、25,……发现这几组勾股数的勾都是奇数,且从3起就没有间断过。计算0.5(9+1)与0.5(25-1)、0.5(25+1),并根据你发现的规律,分别写出能表示7、24、25这一组数的股与弦的算式 (2)根据(1)的规律,若用n(n为奇数且n≥3)来表示所有这些勾股数的勾、股、弦,合情猜想它们之间的关系并对其中一种猜想加以证明 (3)继续观察4,3,5;6,8,10…可以发现各组的第一数都是偶数,且从4起也没有间断过.运用类似上述探索的方法,直接用含有m(m为偶数,且m>4)的式子表示它们的股与弦 展开
 我来答
琴厚纵清秋
2019-11-29 · TA获得超过1074个赞
知道小有建树答主
回答量:2869
采纳率:100%
帮助的人:16.2万
展开全部
将△PBC绕B点逆时针旋转90°至BC与AB重合,得到一个新的△AQB,可知:BQ=PB=2,QA=PC=3,∠ABQ=∠PBC,
由于∠PBC+∠ABP=90°,所以∠PBQ=∠ABQ+∠ABP=∠PBC+∠ABP=90°,则△PBQ是一个等腰直角三角形,
故:∠BPQ=45°,
由勾股定理,得:PQ^2=PB^2+BQ^2=2^2+2^2=8,
另外,在△APQ中,PA^2+PQ^2=1^2+8=9=QA^2,由勾股定理知:△APQ是一个以∠APQ为直角的直角三角形,即∠APQ=90°。
综上得:∠APB=∠APQ+∠BPQ=90°+45°=135°。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
北京埃德思远电气技术咨询有限公司
2023-07-25 广告
短路计算的条件主要包括以下几点:1. 假设系统有无限大的容量,即系统容量无限大。2. 用户处短路后,系统母线电压能维持不变,即计算阻抗比系统阻抗要大得多。3. 在计算高压电器中的短路电流时,只需考虑发电机、变压器、电抗器的电抗,而忽略其电阻... 点击进入详情页
本回答由北京埃德思远电气技术咨询有限公司提供
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式