已知数列{an}的前n项和为Sn,满足an=1-2Sn,(n∈N*)(Ⅰ)证明数...
已知数列{an}的前n项和为Sn,满足an=1-2Sn,(n∈N*)(Ⅰ)证明数列{bn}为等比数列;(Ⅱ)设bn=n(an-1),求数列{bn}的前n项和Tn....
已知数列{an}的前n项和为Sn,满足an=1-2Sn,(n∈N*) (Ⅰ)证明数列{bn}为等比数列; (Ⅱ)设bn=n(an-1),求数列{bn}的前n项和Tn.
展开
1个回答
展开全部
解答:(I)证明:∵数列{an}的前n项和为Sn,满足an=1-2Sn,
∴n≥2时,an-1=1-2Sn-1,
两式相减得:an-an-1=-2(Sn-Sn-1)=-2an,
∴
an
an-1
=
1
3
,n≥2,
又n=1时,an=1-2S1=1-2a1,解得a1=
1
3
,
∴数列{an}为首项为
1
3
,公比为
1
3
的等比数列.
(II)解:由(I)知an=
1
3n
,
∴bn=n(an-1)=n•
1
3n
-n,
∴Tn=(1×
1
3
-1)+(2×
1
32
-2)+…+(n•
1
3n
-n)
=(1×
1
3
+2×
1
32
+…+n×
1
3n
)-
n(n+1)
2
,
令Pn=1×
1
3
+2×
1
32
+…+n×
1
3n
,(1)
1
3
Pn=1×
1
32
+2×
1
33
+…+n×
1
3n+1
,(2)
(1)-(2),得
2
3
Pn=
1
3
+
1
32
+
1
33
+…+
1
3n
-n×
1
3n+1
=
1
3
(1-
1
3n
)
1-
1
3
-n×
1
3n+1
=
1
2
-
1
2
×
1
3n
-n×
1
3n+1
.
∴Pn=
3
4
-
n+9
3n+1
.
∴Tn=
3
4
-
n+9
3n+1
-
n(n+1)
2
.
∴n≥2时,an-1=1-2Sn-1,
两式相减得:an-an-1=-2(Sn-Sn-1)=-2an,
∴
an
an-1
=
1
3
,n≥2,
又n=1时,an=1-2S1=1-2a1,解得a1=
1
3
,
∴数列{an}为首项为
1
3
,公比为
1
3
的等比数列.
(II)解:由(I)知an=
1
3n
,
∴bn=n(an-1)=n•
1
3n
-n,
∴Tn=(1×
1
3
-1)+(2×
1
32
-2)+…+(n•
1
3n
-n)
=(1×
1
3
+2×
1
32
+…+n×
1
3n
)-
n(n+1)
2
,
令Pn=1×
1
3
+2×
1
32
+…+n×
1
3n
,(1)
1
3
Pn=1×
1
32
+2×
1
33
+…+n×
1
3n+1
,(2)
(1)-(2),得
2
3
Pn=
1
3
+
1
32
+
1
33
+…+
1
3n
-n×
1
3n+1
=
1
3
(1-
1
3n
)
1-
1
3
-n×
1
3n+1
=
1
2
-
1
2
×
1
3n
-n×
1
3n+1
.
∴Pn=
3
4
-
n+9
3n+1
.
∴Tn=
3
4
-
n+9
3n+1
-
n(n+1)
2
.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询