设函数f(x)=cos(2x+π/3)+sin^2( x+π).求函数的最小正周期和单调递增区间
展开全部
f(x)=cos(2x+π/3)+[sin(x+π)]^2
f(x)=cos(2x)cos(π/3)-sin(2x)sin(π/3)+(sinx)^2
f(x)=(1/2)cos(2x)-[(√3)/2]sin(2x)+[1-cos(2x)]/2
f(x)=(1/2)cos(2x)-[(√3)/2]sin(2x)-(1/2)cos(2x)+1/2
f(x)=1/2-[(√3)/2]sin(2x)
可见,最小正周期是:2π/2=π
f(x)=1/2-[(√3)/2]sin(2x)
f'(x)=-(√3)cos(2x)
令:f'(x)>0,即:-(√3)cos(2x)>0
整理,有:cos(2x)<0
可见:2kπ+π/2<2x<2kπ+3π/2,其中:k=0、±1、±2、±3……
解得:kπ+π/4<x<kπ+3π/4,
即:f(x)单调区间是:x∈(kπ+π/4,kπ+3π/4),其中:k=0、±1、±2、±3……
f(x)=cos(2x)cos(π/3)-sin(2x)sin(π/3)+(sinx)^2
f(x)=(1/2)cos(2x)-[(√3)/2]sin(2x)+[1-cos(2x)]/2
f(x)=(1/2)cos(2x)-[(√3)/2]sin(2x)-(1/2)cos(2x)+1/2
f(x)=1/2-[(√3)/2]sin(2x)
可见,最小正周期是:2π/2=π
f(x)=1/2-[(√3)/2]sin(2x)
f'(x)=-(√3)cos(2x)
令:f'(x)>0,即:-(√3)cos(2x)>0
整理,有:cos(2x)<0
可见:2kπ+π/2<2x<2kπ+3π/2,其中:k=0、±1、±2、±3……
解得:kπ+π/4<x<kπ+3π/4,
即:f(x)单调区间是:x∈(kπ+π/4,kπ+3π/4),其中:k=0、±1、±2、±3……
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询